Spaces:
Sleeping
Sleeping
from base64 import b64encode | |
import numpy | |
import torch | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel | |
from huggingface_hub import notebook_login | |
import gradio as gr | |
import spaces | |
# For video display: | |
from matplotlib import pyplot as plt | |
from pathlib import Path | |
from PIL import Image | |
from torch import autocast | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
import os | |
import numpy as np | |
# Supress some unnecessary warnings when loading the CLIPTextModel | |
logging.set_verbosity_error() | |
# Set device | |
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
# Load the autoencoder model which will be used to decode the latents into image space. | |
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
# The UNet model for generating the latents. | |
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") | |
# The noise scheduler | |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
# To the GPU we go! | |
vae = vae.to(torch_device) | |
text_encoder = text_encoder.to(torch_device) | |
unet = unet.to(torch_device) | |
token_emb_layer = text_encoder.text_model.embeddings.token_embedding | |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding | |
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] | |
position_embeddings = pos_emb_layer(position_ids) | |
def get_output_embeds(input_embeddings): | |
# CLIP's text model uses causal mask, so we prepare it here: | |
bsz, seq_len = input_embeddings.shape[:2] | |
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) | |
# Getting the output embeddings involves calling the model with passing output_hidden_states=True | |
# so that it doesn't just return the pooled final predictions: | |
encoder_outputs = text_encoder.text_model.encoder( | |
inputs_embeds=input_embeddings, | |
attention_mask=None, # We aren't using an attention mask so that can be None | |
causal_attention_mask=causal_attention_mask.to(torch_device), | |
output_attentions=None, | |
output_hidden_states=True, # We want the output embs not the final output | |
return_dict=None, | |
) | |
# We're interested in the output hidden state only | |
output = encoder_outputs[0] | |
# There is a final layer norm we need to pass these through | |
output = text_encoder.text_model.final_layer_norm(output) | |
# And now they're ready! | |
return output | |
def set_timesteps(scheduler, num_inference_steps): | |
scheduler.set_timesteps(num_inference_steps) | |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) | |
def pil_to_latent(input_im): | |
# Single image -> single latent in a batch (so size 1, 4, 64, 64) | |
with torch.no_grad(): | |
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling | |
return 0.18215 * latent.latent_dist.sample() | |
def latents_to_pil(latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def generate_with_embs(text_embeddings, text_input, seed,num_inference_steps,guidance_scale): | |
height = 512 # default height of Stable Diffusion | |
width = 512 # default width of Stable Diffusion | |
num_inference_steps = num_inference_steps # 10 # Number of denoising steps | |
guidance_scale = guidance_scale # 7.5 # Scale for classifier-free guidance | |
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise | |
batch_size = 1 | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
set_timesteps(scheduler, num_inference_steps) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, unet.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latents.to(torch_device) | |
latents = latents * scheduler.init_noise_sigma | |
# Loop | |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
return latents_to_pil(latents)[0] | |
def generate_with_prompt_style(prompt, style, seed): | |
prompt = prompt + ' in style of s' | |
embed = torch.load(style) | |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
# for t in text_input['input_ids'][0][:20]: # We'll just look at the first 7 to save you from a wall of '<|endoftext|>' | |
# print(t, tokenizer.decoder.get(int(t))) | |
input_ids = text_input.input_ids.to(torch_device) | |
token_embeddings = token_emb_layer(input_ids) | |
# The new embedding - our special birb word | |
replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device) | |
# Insert this into the token embeddings | |
token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device) | |
# Combine with pos embs | |
input_embeddings = token_embeddings + position_embeddings | |
# Feed through to get final output embs | |
modified_output_embeddings = get_output_embeds(input_embeddings) | |
# And generate an image with this: | |
return generate_with_embs(modified_output_embeddings, text_input, seed) | |
def contrast_loss(images): | |
variance = torch.var(images) | |
return -variance | |
def blue_loss(images): | |
""" | |
Computes the blue loss for a batch of images. | |
The blue loss is defined as the negative variance of the blue channel's pixel values. | |
Parameters: | |
images (torch.Tensor): A batch of images. Expected shape is (N, C, H, W) where | |
N is the batch size, C is the number of channels (3 for RGB), | |
H is the height, and W is the width. | |
Returns: | |
torch.Tensor: The blue loss, which is the negative variance of the blue channel's pixel values. | |
""" | |
# Ensure the input tensor has the correct shape | |
if images.shape[1] != 3: | |
raise ValueError("Expected images with 3 channels (RGB), but got shape {}".format(images.shape)) | |
# Extract the blue channel (assuming the channels are in RGB order) | |
blue_channel = images[:, 2, :, :] | |
# Calculate the variance of the blue channel | |
variance = torch.var(blue_channel) | |
return -variance | |
def ymca_loss(images, weights=(1.0, 1.0, 1.0, 1.0)): | |
""" | |
Computes the YMCA loss for a batch of images. | |
The YMCA loss is a custom loss function combining the mean value of the Y (luminance) channel, | |
the mean value of the M (magenta) channel, the variance of the C (cyan) channel, and the | |
absolute sum of the A (alpha) channel if present. | |
Parameters: | |
images (torch.Tensor): A batch of images. Expected shape is (N, C, H, W) where | |
N is the batch size, C is the number of channels (3 for RGB or 4 for RGBA), | |
H is the height, and W is the width. | |
weights (tuple): A tuple of four floats representing the weights for each component of the loss | |
(default is (1.0, 1.0, 1.0, 1.0)). | |
Returns: | |
torch.Tensor: The YMCA loss, combining the specified components. | |
""" | |
num_channels = images.shape[1] | |
if num_channels not in [3, 4]: | |
raise ValueError("Expected images with 3 (RGB) or 4 (RGBA) channels, but got shape {}".format(images.shape)) | |
# Extract the RGB channels | |
R = images[:, 0, :, :] | |
G = images[:, 1, :, :] | |
B = images[:, 2, :, :] | |
# Convert RGB to Y (luminance) channel | |
Y = 0.299 * R + 0.587 * G + 0.114 * B | |
# Convert RGB to M (magenta) channel | |
M = 1 - G | |
# Convert RGB to C (cyan) channel | |
C = 1 - R | |
# Compute the mean of the Y channel | |
mean_Y = torch.mean(Y) | |
# Compute the mean of the M channel | |
mean_M = torch.mean(M) | |
# Compute the variance of the C channel | |
variance_C = torch.var(C) | |
loss = weights[0] * mean_Y + weights[1] * mean_M - weights[2] * variance_C | |
if num_channels == 4: | |
# Extract the alpha channel | |
A = images[:, 3, :, :] | |
# Compute the absolute sum of the A channel | |
abs_sum_A = torch.sum(torch.abs(A)) | |
# Include the alpha component in the loss | |
loss += weights[3] * abs_sum_A | |
return loss | |
def rgb_to_cmyk(images): | |
""" | |
Converts an RGB image tensor to CMYK. | |
Parameters: | |
images (torch.Tensor): A batch of images in RGB format. Expected shape is (N, 3, H, W). | |
Returns: | |
torch.Tensor: A tensor containing the CMYK channels. | |
""" | |
R = images[:, 0, :, :] | |
G = images[:, 1, :, :] | |
B = images[:, 2, :, :] | |
# Convert RGB to CMY | |
C = 1 - R | |
M = 1 - G | |
Y = 1 - B | |
# Convert CMY to CMYK | |
K = torch.min(torch.min(C, M), Y) | |
C = (C - K) / (1 - K + 1e-8) | |
M = (M - K) / (1 - K + 1e-8) | |
Y = (Y - K) / (1 - K + 1e-8) | |
CMYK = torch.stack([C, M, Y, K], dim=1) | |
return CMYK | |
def cymk_loss(images, weights=(1.0, 1.0, 1.0, 1.0)): | |
""" | |
Computes the CYMK loss for a batch of images. | |
The CYMK loss is a custom loss function combining the variance of the Cyan channel, | |
the mean value of the Yellow channel, the variance of the Magenta channel, and the | |
absolute sum of the Black channel. | |
Parameters: | |
images (torch.Tensor): A batch of images. Expected shape is (N, 3, H, W) for RGB input. | |
weights (tuple): A tuple of four floats representing the weights for each component of the loss | |
(default is (1.0, 1.0, 1.0, 1.0)). | |
Returns: | |
torch.Tensor: The CYMK loss, combining the specified components. | |
""" | |
# Ensure the input tensor has the correct shape | |
if images.shape[1] != 3: | |
raise ValueError("Expected images with 3 channels (RGB), but got shape {}".format(images.shape)) | |
# Convert RGB to CMYK | |
cmyk_images = rgb_to_cmyk(images) | |
# Extract CMYK channels | |
C = cmyk_images[:, 0, :, :] | |
M = cmyk_images[:, 1, :, :] | |
Y = cmyk_images[:, 2, :, :] | |
K = cmyk_images[:, 3, :, :] | |
# Compute the variance of the C channel | |
variance_C = torch.var(C) | |
# Compute the mean of the Y channel | |
mean_Y = torch.mean(Y) | |
# Compute the variance of the M channel | |
variance_M = torch.var(M) | |
# Compute the absolute sum of the K channel | |
abs_sum_K = torch.sum(torch.abs(K)) | |
# Combine the components with the given weights | |
loss = (weights[0] * variance_C) + (weights[1] * mean_Y) + (weights[2] * variance_M) + (weights[3] * abs_sum_K) | |
return loss | |
def blue_loss_variant(images, use_mean=False, alpha=1.0): | |
""" | |
Computes the blue loss for a batch of images with an optional mean component. | |
The blue loss is defined as the negative variance of the blue channel's pixel values. | |
Optionally, it can also include the mean value of the blue channel. | |
Parameters: | |
images (torch.Tensor): A batch of images. Expected shape is (N, C, H, W) where | |
N is the batch size, C is the number of channels (3 for RGB), | |
H is the height, and W is the width. | |
use_mean (bool): If True, includes the mean of the blue channel in the loss calculation. | |
alpha (float): Weighting factor for the mean component when use_mean is True. | |
Returns: | |
torch.Tensor: The blue loss, which is the negative variance of the blue channel's pixel values, | |
optionally combined with the mean value of the blue channel. | |
""" | |
# Ensure the input tensor has the correct shape | |
if images.shape[1] != 3: | |
raise ValueError("Expected images with 3 channels (RGB), but got shape {}".format(images.shape)) | |
# Extract the blue channel (assuming the channels are in RGB order) | |
blue_channel = images[:, 2, :, :] | |
# Calculate the variance of the blue channel | |
variance = torch.var(blue_channel) | |
if use_mean: | |
# Calculate the mean of the blue channel | |
mean = torch.mean(blue_channel) | |
# Combine variance and mean into the loss | |
loss = -variance + alpha * mean | |
else: | |
loss = -variance | |
return loss | |
def generate_with_prompt_style_guidance(prompt, style, seed,num_inference_steps,guidance_scale,loss_function): | |
prompt = prompt + ' in style of s' | |
embed = torch.load(style) | |
height = 512 # default height of Stable Diffusion | |
width = 512 # default width of Stable Diffusion | |
num_inference_steps = num_inference_steps # # Number of denoising steps | |
guidance_scale = guidance_scale # # Scale for classifier-free guidance | |
generator = torch.manual_seed(seed) # Seed generator to create the initial latent noise | |
batch_size = 1 | |
# Prep text | |
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] | |
input_ids = text_input.input_ids.to(torch_device) | |
# Get token embeddings | |
token_embeddings = token_emb_layer(input_ids) | |
# The new embedding - our special birb word | |
replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device) | |
# Insert this into the token embeddings | |
token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device) | |
# Combine with pos embs | |
input_embeddings = token_embeddings + position_embeddings | |
# Feed through to get final output embs | |
modified_output_embeddings = get_output_embeds(input_embeddings) | |
# And the uncond. input as before: | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings]) | |
# Prep Scheduler | |
scheduler.set_timesteps(num_inference_steps) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, unet.config.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latents.to(torch_device) | |
latents = latents * scheduler.init_noise_sigma | |
# Loop | |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform CFG | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
#### ADDITIONAL GUIDANCE ### | |
if i%5 == 0: | |
# Requires grad on the latents | |
latents = latents.detach().requires_grad_() | |
# Get the predicted x0: | |
latents_x0 = latents - sigma * noise_pred | |
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample | |
# Decode to image space | |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) | |
# Calculate loss | |
# "contrast", "blue_original", "blue_modified","ymca_loss","cymk_loss" | |
if loss_function == "contrast": | |
loss_scale = 200 # | |
loss = contrast_loss(denoised_images) * loss_scale | |
elif loss_function == "blue_original": | |
loss_scale = 200 # | |
loss = blue_loss(denoised_images) * loss_scale | |
elif loss_function == "blue_modified": | |
loss_scale = 200 # | |
loss = blue_loss_variant(denoised_images) * loss_scale | |
elif loss_function == "ymca": | |
loss_scale = 200 # | |
loss = ymca_loss(denoised_images) * loss_scale | |
elif loss_function == "cmyk": | |
loss_scale = 1 # | |
loss = cymk_loss(denoised_images) * loss_scale | |
else : | |
loss_scale = 200 | |
loss = ymca_loss(denoised_images) * loss_scale | |
# # Occasionally print it out | |
# if i%10==0: | |
# print(i, 'loss:', loss.item()) | |
# Get gradient | |
cond_grad = torch.autograd.grad(loss, latents)[0] | |
# Modify the latents based on this gradient | |
latents = latents.detach() - cond_grad * sigma**2 | |
# Now step with scheduler | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
return latents_to_pil(latents)[0] | |
dict_styles = { | |
'Dr Strange': 'styles/learned_embeds_dr_strange.bin', | |
'GTA-5':'styles/learned_embeds_gta5.bin', | |
'Manga':'styles/learned_embeds_manga.bin', | |
'Pokemon':'styles/learned_embeds_pokemon.bin', | |
'Illustration': 'styles/learned_embeds_illustration.bin', | |
'Matrix':'styles/learned_embeds_matrix.bin', | |
'Oil Painting':'styles/learned_embeds_oil.bin', | |
} | |
def inference(prompt, seed, style,num_inference_steps,guidance_scale,loss_function): | |
if prompt is not None and style is not None and seed is not None: | |
print(loss_function) | |
style = dict_styles[style] | |
torch.manual_seed(seed) | |
result = generate_with_prompt_style_guidance(prompt, style,seed,num_inference_steps,guidance_scale,loss_function) | |
return np.array(result) | |
else: | |
return None | |
title = "Stable Diffusion and Textual Inversion" | |
description = "Gradio interface to apply style to Stable Diffusion outputs" | |
examples = [["Pink Ferrari Car", 24041975,"Manga"], ["A man sipping tea wearing a spacesuit on the moon",24041975, "GTA-5"]] # Added valid styles | |
demo = gr.Interface(inference, | |
inputs = [gr.Textbox(label='Prompt', value='Pink Ferrari Car'), gr.Textbox(label='Seed', value=24041975), | |
gr.Dropdown(['Dr Strange', 'GTA-5', 'Manga', 'Pokemon','Illustration','Matrix','Oil Painting'], label='Style', value='Dr Strange'), | |
gr.Slider( | |
minimum=5, | |
maximum=20, | |
value=10, | |
step=5, | |
label="Select Number of Steps", | |
interactive=True, | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=10, | |
value=8, | |
step=8, | |
label="Select Guidance Scale", | |
interactive=True, | |
),gr.Radio(["contrast", "blue_original", "blue_modified","ymca","cmyk"], label="loss-function", info="loss-function" , value="ymca"), | |
], | |
outputs = [ | |
gr.Image(label="Stable Diffusion Output"), | |
], | |
title = title, | |
description = description, | |
# examples = examples, | |
# cache_examples=True | |
) | |
demo.launch() | |