Spaces:
Sleeping
Sleeping
File size: 21,495 Bytes
723c4a7 9091147 723c4a7 6798689 e39a71d 723c4a7 9091147 723c4a7 9091147 6798689 723c4a7 6338e31 723c4a7 6338e31 723c4a7 6798689 723c4a7 4e5be15 723c4a7 a00c054 9337350 a00c054 9337350 a00c054 9337350 a00c054 9337350 a00c054 9337350 a00c054 9337350 a00c054 9337350 a00c054 9fe3ab5 a00c054 629cda4 9fe3ab5 723c4a7 9091147 723c4a7 1392cf8 629cda4 9091147 3d736df 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9fe3ab5 3d736df 9fe3ab5 3d736df 9fe3ab5 3d736df d9ebd05 3d736df 9fe3ab5 d9ebd05 3d736df 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 9091147 723c4a7 6798689 9091147 963a611 9091147 a00c054 723c4a7 6798689 a00c054 9091147 6798689 9fe3ab5 9091147 a6156b5 963a611 9091147 3051b5f a6156b5 d19ba9e a6156b5 d9ebd05 a6156b5 723c4a7 963a611 723c4a7 6798689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
from base64 import b64encode
import numpy
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from huggingface_hub import notebook_login
import gradio as gr
import spaces
# For video display:
from matplotlib import pyplot as plt
from pathlib import Path
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
import numpy as np
# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()
# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def generate_with_embs(text_embeddings, text_input, seed,num_inference_steps,guidance_scale):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = num_inference_steps # 10 # Number of denoising steps
guidance_scale = guidance_scale # 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def generate_with_prompt_style(prompt, style, seed):
prompt = prompt + ' in style of s'
embed = torch.load(style)
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
# for t in text_input['input_ids'][0][:20]: # We'll just look at the first 7 to save you from a wall of '<|endoftext|>'
# print(t, tokenizer.decoder.get(int(t)))
input_ids = text_input.input_ids.to(torch_device)
token_embeddings = token_emb_layer(input_ids)
# The new embedding - our special birb word
replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device)
# Insert this into the token embeddings
token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
return generate_with_embs(modified_output_embeddings, text_input, seed)
def contrast_loss(images):
variance = torch.var(images)
return -variance
def blue_loss(images):
"""
Computes the blue loss for a batch of images.
The blue loss is defined as the negative variance of the blue channel's pixel values.
Parameters:
images (torch.Tensor): A batch of images. Expected shape is (N, C, H, W) where
N is the batch size, C is the number of channels (3 for RGB),
H is the height, and W is the width.
Returns:
torch.Tensor: The blue loss, which is the negative variance of the blue channel's pixel values.
"""
# Ensure the input tensor has the correct shape
if images.shape[1] != 3:
raise ValueError("Expected images with 3 channels (RGB), but got shape {}".format(images.shape))
# Extract the blue channel (assuming the channels are in RGB order)
blue_channel = images[:, 2, :, :]
# Calculate the variance of the blue channel
variance = torch.var(blue_channel)
return -variance
def ymca_loss(images, weights=(1.0, 1.0, 1.0, 1.0)):
"""
Computes the YMCA loss for a batch of images.
The YMCA loss is a custom loss function combining the mean value of the Y (luminance) channel,
the mean value of the M (magenta) channel, the variance of the C (cyan) channel, and the
absolute sum of the A (alpha) channel if present.
Parameters:
images (torch.Tensor): A batch of images. Expected shape is (N, C, H, W) where
N is the batch size, C is the number of channels (3 for RGB or 4 for RGBA),
H is the height, and W is the width.
weights (tuple): A tuple of four floats representing the weights for each component of the loss
(default is (1.0, 1.0, 1.0, 1.0)).
Returns:
torch.Tensor: The YMCA loss, combining the specified components.
"""
num_channels = images.shape[1]
if num_channels not in [3, 4]:
raise ValueError("Expected images with 3 (RGB) or 4 (RGBA) channels, but got shape {}".format(images.shape))
# Extract the RGB channels
R = images[:, 0, :, :]
G = images[:, 1, :, :]
B = images[:, 2, :, :]
# Convert RGB to Y (luminance) channel
Y = 0.299 * R + 0.587 * G + 0.114 * B
# Convert RGB to M (magenta) channel
M = 1 - G
# Convert RGB to C (cyan) channel
C = 1 - R
# Compute the mean of the Y channel
mean_Y = torch.mean(Y)
# Compute the mean of the M channel
mean_M = torch.mean(M)
# Compute the variance of the C channel
variance_C = torch.var(C)
loss = weights[0] * mean_Y + weights[1] * mean_M - weights[2] * variance_C
if num_channels == 4:
# Extract the alpha channel
A = images[:, 3, :, :]
# Compute the absolute sum of the A channel
abs_sum_A = torch.sum(torch.abs(A))
# Include the alpha component in the loss
loss += weights[3] * abs_sum_A
return loss
def rgb_to_cmyk(images):
"""
Converts an RGB image tensor to CMYK.
Parameters:
images (torch.Tensor): A batch of images in RGB format. Expected shape is (N, 3, H, W).
Returns:
torch.Tensor: A tensor containing the CMYK channels.
"""
R = images[:, 0, :, :]
G = images[:, 1, :, :]
B = images[:, 2, :, :]
# Convert RGB to CMY
C = 1 - R
M = 1 - G
Y = 1 - B
# Convert CMY to CMYK
K = torch.min(torch.min(C, M), Y)
C = (C - K) / (1 - K + 1e-8)
M = (M - K) / (1 - K + 1e-8)
Y = (Y - K) / (1 - K + 1e-8)
CMYK = torch.stack([C, M, Y, K], dim=1)
return CMYK
def cymk_loss(images, weights=(1.0, 1.0, 1.0, 1.0)):
"""
Computes the CYMK loss for a batch of images.
The CYMK loss is a custom loss function combining the variance of the Cyan channel,
the mean value of the Yellow channel, the variance of the Magenta channel, and the
absolute sum of the Black channel.
Parameters:
images (torch.Tensor): A batch of images. Expected shape is (N, 3, H, W) for RGB input.
weights (tuple): A tuple of four floats representing the weights for each component of the loss
(default is (1.0, 1.0, 1.0, 1.0)).
Returns:
torch.Tensor: The CYMK loss, combining the specified components.
"""
# Ensure the input tensor has the correct shape
if images.shape[1] != 3:
raise ValueError("Expected images with 3 channels (RGB), but got shape {}".format(images.shape))
# Convert RGB to CMYK
cmyk_images = rgb_to_cmyk(images)
# Extract CMYK channels
C = cmyk_images[:, 0, :, :]
M = cmyk_images[:, 1, :, :]
Y = cmyk_images[:, 2, :, :]
K = cmyk_images[:, 3, :, :]
# Compute the variance of the C channel
variance_C = torch.var(C)
# Compute the mean of the Y channel
mean_Y = torch.mean(Y)
# Compute the variance of the M channel
variance_M = torch.var(M)
# Compute the absolute sum of the K channel
abs_sum_K = torch.sum(torch.abs(K))
# Combine the components with the given weights
loss = (weights[0] * variance_C) + (weights[1] * mean_Y) + (weights[2] * variance_M) + (weights[3] * abs_sum_K)
return loss
def blue_loss_variant(images, use_mean=False, alpha=1.0):
"""
Computes the blue loss for a batch of images with an optional mean component.
The blue loss is defined as the negative variance of the blue channel's pixel values.
Optionally, it can also include the mean value of the blue channel.
Parameters:
images (torch.Tensor): A batch of images. Expected shape is (N, C, H, W) where
N is the batch size, C is the number of channels (3 for RGB),
H is the height, and W is the width.
use_mean (bool): If True, includes the mean of the blue channel in the loss calculation.
alpha (float): Weighting factor for the mean component when use_mean is True.
Returns:
torch.Tensor: The blue loss, which is the negative variance of the blue channel's pixel values,
optionally combined with the mean value of the blue channel.
"""
# Ensure the input tensor has the correct shape
if images.shape[1] != 3:
raise ValueError("Expected images with 3 channels (RGB), but got shape {}".format(images.shape))
# Extract the blue channel (assuming the channels are in RGB order)
blue_channel = images[:, 2, :, :]
# Calculate the variance of the blue channel
variance = torch.var(blue_channel)
if use_mean:
# Calculate the mean of the blue channel
mean = torch.mean(blue_channel)
# Combine variance and mean into the loss
loss = -variance + alpha * mean
else:
loss = -variance
return loss
@spaces.GPU
def generate_with_prompt_style_guidance(prompt, style, seed,num_inference_steps,guidance_scale,loss_function):
prompt = prompt + ' in style of s'
embed = torch.load(style)
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = num_inference_steps # # Number of denoising steps
guidance_scale = guidance_scale # # Scale for classifier-free guidance
generator = torch.manual_seed(seed) # Seed generator to create the initial latent noise
batch_size = 1
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
# The new embedding - our special birb word
replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device)
# Insert this into the token embeddings
token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings])
# Prep Scheduler
scheduler.set_timesteps(num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.config.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
# "contrast", "blue_original", "blue_modified","ymca_loss","cymk_loss"
if loss_function == "contrast":
loss_scale = 200 #
loss = contrast_loss(denoised_images) * loss_scale
elif loss_function == "blue_original":
loss_scale = 200 #
loss = blue_loss(denoised_images) * loss_scale
elif loss_function == "blue_modified":
loss_scale = 200 #
loss = blue_loss_variant(denoised_images) * loss_scale
elif loss_function == "ymca":
loss_scale = 200 #
loss = ymca_loss(denoised_images) * loss_scale
elif loss_function == "cmyk":
loss_scale = 1 #
loss = cymk_loss(denoised_images) * loss_scale
else :
loss_scale = 200
loss = ymca_loss(denoised_images) * loss_scale
# # Occasionally print it out
# if i%10==0:
# print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
dict_styles = {
'Dr Strange': 'styles/learned_embeds_dr_strange.bin',
'GTA-5':'styles/learned_embeds_gta5.bin',
'Manga':'styles/learned_embeds_manga.bin',
'Pokemon':'styles/learned_embeds_pokemon.bin',
'Illustration': 'styles/learned_embeds_illustration.bin',
'Matrix':'styles/learned_embeds_matrix.bin',
'Oil Painting':'styles/learned_embeds_oil.bin',
}
def inference(prompt, seed, style,num_inference_steps,guidance_scale,loss_function):
if prompt is not None and style is not None and seed is not None:
print(loss_function)
style = dict_styles[style]
torch.manual_seed(seed)
result = generate_with_prompt_style_guidance(prompt, style,seed,num_inference_steps,guidance_scale,loss_function)
return np.array(result)
else:
return None
title = "Stable Diffusion and Textual Inversion"
description = "Gradio interface to apply style to Stable Diffusion outputs"
examples = [["Pink Ferrari Car", 24041975,"Manga"], ["A man sipping tea wearing a spacesuit on the moon",24041975, "GTA-5"]] # Added valid styles
demo = gr.Interface(inference,
inputs = [gr.Textbox(label='Prompt', value='Pink Ferrari Car'), gr.Textbox(label='Seed', value=24041975),
gr.Dropdown(['Dr Strange', 'GTA-5', 'Manga', 'Pokemon','Illustration','Matrix','Oil Painting'], label='Style', value='Dr Strange'),
gr.Slider(
minimum=5,
maximum=20,
value=10,
step=5,
label="Select Number of Steps",
interactive=True,
),
gr.Slider(
minimum=0,
maximum=10,
value=8,
step=8,
label="Select Guidance Scale",
interactive=True,
),gr.Radio(["contrast", "blue_original", "blue_modified","ymca","cmyk"], label="loss-function", info="loss-function" , value="ymca"),
],
outputs = [
gr.Image(label="Stable Diffusion Output"),
],
title = title,
description = description,
# examples = examples,
# cache_examples=True
)
demo.launch()
|