Shivdutta's picture
Update app.py
67c8bff verified
import gradio as gr
import peft
from peft import LoraConfig
from transformers import AutoTokenizer,BitsAndBytesConfig, AutoModelForCausalLM, CLIPVisionModel, AutoProcessor
import torch
from peft import PeftModel
import torch.nn as nn
import whisperx
import os
clip_model_name = "openai/clip-vit-base-patch32"
phi_model_name = "microsoft/phi-2"
# Tokenizers and Processors: The tokenizer tokenizes text, and the processor handles preprocessing for images.
# Embedding sizes: clip_embed (768) is for the CLIP model, and phi_embed (2560) is for the Phi-2 model.
# Device: It selects CUDA if a GPU is available, otherwise, it uses the CPU.
# IMAGE_TOKEN_ID: Token ID reserved for images.
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(clip_model_name)
tokenizer.pad_token = tokenizer.eos_token
IMAGE_TOKEN_ID = 23893 # token for word comment
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_embed = 768
phi_embed = 2560
compute_type = "float32"
audio_batch_size = 16
# This defines a simple residual block that uses a layer normalization (LayerNorm) followed by two linear layers with a GELU activation function in between.
# The block is used to add learned transformations to the embeddings, which helps in stabilizing learning and improving generalization.
class SimpleResBlock(nn.Module):
def __init__(self, phi_embed):
super().__init__()
self.pre_norm = nn.LayerNorm(phi_embed)
self.proj = nn.Sequential(
nn.Linear(phi_embed, phi_embed),
nn.GELU(),
nn.Linear(phi_embed, phi_embed)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
# models
# CLIP Vision Model: Pretrained on visual tasks, outputs image embeddings.
# Projection Layer: Projects the clip_embed (768) dimensions to phi_embed (2560) to match the embedding sizes for downstream tasks.
# Residual Block: Uses the custom SimpleResBlock to process the embeddings further.
# Phi-2 Model: The language model handles text generation tasks.
clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device)
projection = torch.nn.Linear(clip_embed, phi_embed).to(device)
resblock = SimpleResBlock(phi_embed).to(device)
phi_model = AutoModelForCausalLM.from_pretrained(phi_model_name,trust_remote_code=True).to(device)
audio_model = whisperx.load_model("tiny", device, compute_type=compute_type, asr_options={'max_new_tokens': 2048, 'clip_timestamps': True, 'hallucination_silence_threshold': 0.25})
# load weights
# LoRA Weights: The LoRA-adapted model merges with the Phi-2 model for fine-tuning.
# Loading Finetuned Layers: The pre-trained weights for the projection layer and residual block are loaded for further use.
model_to_merge = PeftModel.from_pretrained(phi_model,os.path.join(os.getcwd(), 'model_chkpt/lora_adaptor'))
merged_model = model_to_merge.merge_and_unload()
projection.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetunned_projection.pth'),map_location=torch.device(device)))
resblock.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetuned_resblock.pth'),map_location=torch.device(device)))
# Image Handling: Extracts image embeddings, passes through CLIP and a projection layer.
# Audio Handling: Transcribes audio with WhisperX, tokenizes it, and embeds the tokens.
# Text Handling: Tokenizes the text query and embeds it.
# Generating Response: The model generates tokens sequentially, combining inputs from images, audio, and text, and predicting the next token until it generates a full response.
def model_generate_ans(img=None,img_audio=None,val_q=None):
max_generate_length = 100
val_combined_embeds = []
with torch.no_grad():
# image
if img is not None:
image_processed = processor(images=img, return_tensors="pt").to(device)
clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,1:,:]
val_image_embeds = projection(clip_val_outputs)
val_image_embeds = resblock(val_image_embeds).to(torch.float16)
img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device)
img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0)
val_combined_embeds.append(val_image_embeds)
val_combined_embeds.append(img_token_embeds)
# audio
if img_audio is not None:
audio_result = audio_model.transcribe(img_audio)
audio_text = ''
for seg in audio_result['segments']:
audio_text += seg['text']
audio_text = audio_text.strip()
audio_tokens = tokenizer(audio_text, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
audio_embeds = merged_model.model.embed_tokens(audio_tokens).unsqueeze(0)
val_combined_embeds.append(audio_embeds)
# text question
if len(val_q) != 0:
val_q_tokenised = tokenizer(val_q, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
val_q_embeds = merged_model.model.embed_tokens(val_q_tokenised).unsqueeze(0)
val_combined_embeds.append(val_q_embeds)
val_combined_embeds = torch.cat(val_combined_embeds,dim=1)
#val_combined_embeds = torch.cat([val_image_embeds, img_token_embeds, val_q_embeds], dim=1) # 4, 69, 2560
predicted_caption = torch.full((1,max_generate_length),50256).to(device)
for g in range(max_generate_length):
phi_output_logits = merged_model(inputs_embeds=val_combined_embeds)['logits'] # 4, 69, 51200
predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1) # 4,1,51200
predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1) # 4,1
predicted_caption[:,g] = predicted_word_token.view(1,-1)
next_token_embeds = phi_model.model.embed_tokens(predicted_word_token) # 4,1,2560
val_combined_embeds = torch.cat([val_combined_embeds, next_token_embeds], dim=1)
predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256)[0]
# Split the string at the first occurrence of <|endoftext|>
result = predicted_captions_decoded.split('<|endoftext|>')[0]
return result.strip() # Strip any trailing spaces or newlines
#return predicted_captions_decoded
with gr.Blocks() as demo:
# Add custom CSS stylesheet within Markdown
gr.Markdown(
"""
<style>
/* General Layout */
body {
font-family: 'Arial', sans-serif;
background-color: #ffe4e1;
margin: 0;
padding: 0;
}
/* Header */
h1, h2, h3 {
text-align: center;
color: #3a3a3a;
font-weight: bold;
}
gr-Markdown h1 {
font-size: 28px;
color: #a3d5d3; /* Soft pastel teal for the header */
}
/* Container and Columns */
.gr-row {
display: flex;
justify-content: center;
margin: 20px 0;
}
.gr-column {
flex: 1;
margin: 0 10px;
padding: 10px;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.05);
background-color: #f8f0fa; /* Pastel pink background for columns */
border-radius: 8px;
}
/* Input Components */
.gr-Image, .gr-Audio, .gr-Text {
width: 100%;
margin-bottom: 15px;
background-color: #fff5e1; /* Soft pastel yellow for inputs */
border: 1px solid #e3e3e3;
border-radius: 8px;
}
.gr-Image label, .gr-Audio label, .gr-Text label {
font-size: 16px;
font-weight: bold;
color: #8b8b8b;
}
/* Submit Button */
.gr-Button {
width: 100%;
background-color: #b2c7e1; /* Pastel blue button */
color: white;
padding: 10px;
font-size: 16px;
border: none;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s ease;
}
.gr-Button:hover {
background-color: #9db6d3; /* Darker pastel blue on hover */
}
/* Text Output */
.gr-Text {
font-size: 16px;
color: #333;
min-height: 100px;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
background-color: #edf5e1; /* Light pastel green for the output text box */
}
/* Responsive Design */
@media (max-width: 768px) {
.gr-row {
flex-direction: column;
}
.gr-column {
margin: 10px 0;
}
}
</style>
# Engage with MultiModal GPT!
A seamless AI experience combining CLIP and Phi-2 models.
"""
)
# app GUI
with gr.Row():
with gr.Column():
img_input = gr.Image(label='Image',type="pil")
img_audio = gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath')
img_question = gr.Text(label ='Text Query')
with gr.Column():
img_answer = gr.Text(label ='Answer')
section_btn = gr.Button("Submit")
section_btn.click(model_generate_ans, inputs=[img_input,img_audio,img_question], outputs=[img_answer])
demo.launch()