Spaces:
Runtime error
Runtime error
File size: 9,417 Bytes
70d113f 5dfce3a 70d113f 60b820b 70d113f fa8b743 70d113f 5dfce3a 70d113f 7ac8e01 fa8b743 7ac8e01 70d113f 5dfce3a fa8b743 70d113f 5dfce3a 2f7187f c70b1b3 5dfce3a fa8b743 5dfce3a fa8b743 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 7ac8e01 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 60b820b 5dfce3a 70d113f 67c8bff 5dfce3a 70d113f 5dfce3a 04e4d09 70d113f 5dfce3a e7578ee fa8b743 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 04e4d09 e7578ee 3de9321 04e4d09 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 5dfce3a 70d113f 60b820b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
import peft
from peft import LoraConfig
from transformers import AutoTokenizer,BitsAndBytesConfig, AutoModelForCausalLM, CLIPVisionModel, AutoProcessor
import torch
from peft import PeftModel
import torch.nn as nn
import whisperx
import os
clip_model_name = "openai/clip-vit-base-patch32"
phi_model_name = "microsoft/phi-2"
# Tokenizers and Processors: The tokenizer tokenizes text, and the processor handles preprocessing for images.
# Embedding sizes: clip_embed (768) is for the CLIP model, and phi_embed (2560) is for the Phi-2 model.
# Device: It selects CUDA if a GPU is available, otherwise, it uses the CPU.
# IMAGE_TOKEN_ID: Token ID reserved for images.
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(clip_model_name)
tokenizer.pad_token = tokenizer.eos_token
IMAGE_TOKEN_ID = 23893 # token for word comment
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_embed = 768
phi_embed = 2560
compute_type = "float32"
audio_batch_size = 16
# This defines a simple residual block that uses a layer normalization (LayerNorm) followed by two linear layers with a GELU activation function in between.
# The block is used to add learned transformations to the embeddings, which helps in stabilizing learning and improving generalization.
class SimpleResBlock(nn.Module):
def __init__(self, phi_embed):
super().__init__()
self.pre_norm = nn.LayerNorm(phi_embed)
self.proj = nn.Sequential(
nn.Linear(phi_embed, phi_embed),
nn.GELU(),
nn.Linear(phi_embed, phi_embed)
)
def forward(self, x):
x = self.pre_norm(x)
return x + self.proj(x)
# models
# CLIP Vision Model: Pretrained on visual tasks, outputs image embeddings.
# Projection Layer: Projects the clip_embed (768) dimensions to phi_embed (2560) to match the embedding sizes for downstream tasks.
# Residual Block: Uses the custom SimpleResBlock to process the embeddings further.
# Phi-2 Model: The language model handles text generation tasks.
clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device)
projection = torch.nn.Linear(clip_embed, phi_embed).to(device)
resblock = SimpleResBlock(phi_embed).to(device)
phi_model = AutoModelForCausalLM.from_pretrained(phi_model_name,trust_remote_code=True).to(device)
audio_model = whisperx.load_model("tiny", device, compute_type=compute_type, asr_options={'max_new_tokens': 2048, 'clip_timestamps': True, 'hallucination_silence_threshold': 0.25})
# load weights
# LoRA Weights: The LoRA-adapted model merges with the Phi-2 model for fine-tuning.
# Loading Finetuned Layers: The pre-trained weights for the projection layer and residual block are loaded for further use.
model_to_merge = PeftModel.from_pretrained(phi_model,os.path.join(os.getcwd(), 'model_chkpt/lora_adaptor'))
merged_model = model_to_merge.merge_and_unload()
projection.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetunned_projection.pth'),map_location=torch.device(device)))
resblock.load_state_dict(torch.load(os.path.join(os.getcwd(),'model_chkpt/finetuned_resblock.pth'),map_location=torch.device(device)))
# Image Handling: Extracts image embeddings, passes through CLIP and a projection layer.
# Audio Handling: Transcribes audio with WhisperX, tokenizes it, and embeds the tokens.
# Text Handling: Tokenizes the text query and embeds it.
# Generating Response: The model generates tokens sequentially, combining inputs from images, audio, and text, and predicting the next token until it generates a full response.
def model_generate_ans(img=None,img_audio=None,val_q=None):
max_generate_length = 100
val_combined_embeds = []
with torch.no_grad():
# image
if img is not None:
image_processed = processor(images=img, return_tensors="pt").to(device)
clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,1:,:]
val_image_embeds = projection(clip_val_outputs)
val_image_embeds = resblock(val_image_embeds).to(torch.float16)
img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device)
img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0)
val_combined_embeds.append(val_image_embeds)
val_combined_embeds.append(img_token_embeds)
# audio
if img_audio is not None:
audio_result = audio_model.transcribe(img_audio)
audio_text = ''
for seg in audio_result['segments']:
audio_text += seg['text']
audio_text = audio_text.strip()
audio_tokens = tokenizer(audio_text, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
audio_embeds = merged_model.model.embed_tokens(audio_tokens).unsqueeze(0)
val_combined_embeds.append(audio_embeds)
# text question
if len(val_q) != 0:
val_q_tokenised = tokenizer(val_q, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
val_q_embeds = merged_model.model.embed_tokens(val_q_tokenised).unsqueeze(0)
val_combined_embeds.append(val_q_embeds)
val_combined_embeds = torch.cat(val_combined_embeds,dim=1)
#val_combined_embeds = torch.cat([val_image_embeds, img_token_embeds, val_q_embeds], dim=1) # 4, 69, 2560
predicted_caption = torch.full((1,max_generate_length),50256).to(device)
for g in range(max_generate_length):
phi_output_logits = merged_model(inputs_embeds=val_combined_embeds)['logits'] # 4, 69, 51200
predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1) # 4,1,51200
predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1) # 4,1
predicted_caption[:,g] = predicted_word_token.view(1,-1)
next_token_embeds = phi_model.model.embed_tokens(predicted_word_token) # 4,1,2560
val_combined_embeds = torch.cat([val_combined_embeds, next_token_embeds], dim=1)
predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256)[0]
# Split the string at the first occurrence of <|endoftext|>
result = predicted_captions_decoded.split('<|endoftext|>')[0]
return result.strip() # Strip any trailing spaces or newlines
#return predicted_captions_decoded
with gr.Blocks() as demo:
# Add custom CSS stylesheet within Markdown
gr.Markdown(
"""
<style>
/* General Layout */
body {
font-family: 'Arial', sans-serif;
background-color: #ffe4e1;
margin: 0;
padding: 0;
}
/* Header */
h1, h2, h3 {
text-align: center;
color: #3a3a3a;
font-weight: bold;
}
gr-Markdown h1 {
font-size: 28px;
color: #a3d5d3; /* Soft pastel teal for the header */
}
/* Container and Columns */
.gr-row {
display: flex;
justify-content: center;
margin: 20px 0;
}
.gr-column {
flex: 1;
margin: 0 10px;
padding: 10px;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.05);
background-color: #f8f0fa; /* Pastel pink background for columns */
border-radius: 8px;
}
/* Input Components */
.gr-Image, .gr-Audio, .gr-Text {
width: 100%;
margin-bottom: 15px;
background-color: #fff5e1; /* Soft pastel yellow for inputs */
border: 1px solid #e3e3e3;
border-radius: 8px;
}
.gr-Image label, .gr-Audio label, .gr-Text label {
font-size: 16px;
font-weight: bold;
color: #8b8b8b;
}
/* Submit Button */
.gr-Button {
width: 100%;
background-color: #b2c7e1; /* Pastel blue button */
color: white;
padding: 10px;
font-size: 16px;
border: none;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s ease;
}
.gr-Button:hover {
background-color: #9db6d3; /* Darker pastel blue on hover */
}
/* Text Output */
.gr-Text {
font-size: 16px;
color: #333;
min-height: 100px;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
background-color: #edf5e1; /* Light pastel green for the output text box */
}
/* Responsive Design */
@media (max-width: 768px) {
.gr-row {
flex-direction: column;
}
.gr-column {
margin: 10px 0;
}
}
</style>
# Engage with MultiModal GPT!
A seamless AI experience combining CLIP and Phi-2 models.
"""
)
# app GUI
with gr.Row():
with gr.Column():
img_input = gr.Image(label='Image',type="pil")
img_audio = gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath')
img_question = gr.Text(label ='Text Query')
with gr.Column():
img_answer = gr.Text(label ='Answer')
section_btn = gr.Button("Submit")
section_btn.click(model_generate_ans, inputs=[img_input,img_audio,img_question], outputs=[img_answer])
demo.launch() |