Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,6 @@ from peft import PeftModel
|
|
7 |
import torch.nn as nn
|
8 |
import whisperx
|
9 |
import os
|
10 |
-
|
11 |
-
|
12 |
clip_model_name = "openai/clip-vit-base-patch32"
|
13 |
phi_model_name = "microsoft/phi-2"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
|
@@ -18,10 +16,18 @@ IMAGE_TOKEN_ID = 23893 # token for word comment
|
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
clip_embed = 768
|
20 |
phi_embed = 2560
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
nn.GELU(),
|
22 |
nn.Linear(phi_embed, phi_embed)
|
23 |
)
|
24 |
-
|
25 |
def forward(self, x):
|
26 |
x = self.pre_norm(x)
|
27 |
return x + self.proj(x)
|
@@ -54,6 +60,9 @@ def model_generate_ans(img=None,img_audio=None,val_q=None):
|
|
54 |
val_image_embeds = projection(clip_val_outputs)
|
55 |
val_image_embeds = resblock(val_image_embeds).to(torch.float16)
|
56 |
|
|
|
|
|
|
|
57 |
val_combined_embeds.append(val_image_embeds)
|
58 |
val_combined_embeds.append(img_token_embeds)
|
59 |
|
@@ -92,7 +101,6 @@ def model_generate_ans(img=None,img_audio=None,val_q=None):
|
|
92 |
return predicted_captions_decoded
|
93 |
|
94 |
|
95 |
-
|
96 |
with gr.Blocks() as demo:
|
97 |
|
98 |
gr.Markdown(
|
@@ -108,7 +116,6 @@ with gr.Blocks() as demo:
|
|
108 |
img_input = gr.Image(label='Image',type="pil")
|
109 |
img_audio = gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath')
|
110 |
img_question = gr.Text(label ='Text Query')
|
111 |
-
|
112 |
with gr.Column():
|
113 |
img_answer = gr.Text(label ='Answer')
|
114 |
|
|
|
7 |
import torch.nn as nn
|
8 |
import whisperx
|
9 |
import os
|
|
|
|
|
10 |
clip_model_name = "openai/clip-vit-base-patch32"
|
11 |
phi_model_name = "microsoft/phi-2"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
|
|
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
clip_embed = 768
|
18 |
phi_embed = 2560
|
19 |
+
compute_type = "float32"
|
20 |
+
audio_batch_size = 16
|
21 |
+
|
22 |
+
class SimpleResBlock(nn.Module):
|
23 |
+
def __init__(self, phi_embed):
|
24 |
+
super().__init__()
|
25 |
+
self.pre_norm = nn.LayerNorm(phi_embed)
|
26 |
+
self.proj = nn.Sequential(
|
27 |
+
nn.Linear(phi_embed, phi_embed),
|
28 |
nn.GELU(),
|
29 |
nn.Linear(phi_embed, phi_embed)
|
30 |
)
|
|
|
31 |
def forward(self, x):
|
32 |
x = self.pre_norm(x)
|
33 |
return x + self.proj(x)
|
|
|
60 |
val_image_embeds = projection(clip_val_outputs)
|
61 |
val_image_embeds = resblock(val_image_embeds).to(torch.float16)
|
62 |
|
63 |
+
img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device)
|
64 |
+
img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0)
|
65 |
+
|
66 |
val_combined_embeds.append(val_image_embeds)
|
67 |
val_combined_embeds.append(img_token_embeds)
|
68 |
|
|
|
101 |
return predicted_captions_decoded
|
102 |
|
103 |
|
|
|
104 |
with gr.Blocks() as demo:
|
105 |
|
106 |
gr.Markdown(
|
|
|
116 |
img_input = gr.Image(label='Image',type="pil")
|
117 |
img_audio = gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath')
|
118 |
img_question = gr.Text(label ='Text Query')
|
|
|
119 |
with gr.Column():
|
120 |
img_answer = gr.Text(label ='Answer')
|
121 |
|