Spaces:
Running
on
Zero
Running
on
Zero
| # Consistency Training | |
| `train_cm_ct_unconditional.py` trains a consistency model (CM) from scratch following the consistency training (CT) algorithm introduced in [Consistency Models](https://arxiv.org/abs/2303.01469) and refined in [Improved Techniques for Training Consistency Models](https://arxiv.org/abs/2310.14189). Both unconditional and class-conditional training are supported. | |
| A usage example is as follows: | |
| ```bash | |
| accelerate launch examples/research_projects/consistency_training/train_cm_ct_unconditional.py \ | |
| --dataset_name="cifar10" \ | |
| --dataset_image_column_name="img" \ | |
| --output_dir="/path/to/output/dir" \ | |
| --mixed_precision=fp16 \ | |
| --resolution=32 \ | |
| --max_train_steps=1000 --max_train_samples=10000 \ | |
| --dataloader_num_workers=8 \ | |
| --noise_precond_type="cm" --input_precond_type="cm" \ | |
| --train_batch_size=4 \ | |
| --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ | |
| --use_8bit_adam \ | |
| --use_ema \ | |
| --validation_steps=100 --eval_batch_size=4 \ | |
| --checkpointing_steps=100 --checkpoints_total_limit=10 \ | |
| --class_conditional --num_classes=10 \ | |
| ``` |