|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import sqlparse |
|
import gradio as gr |
|
|
|
model_name = "defog/llama-3-sqlcoder-8b" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
trust_remote_code=True, |
|
device_map={"": "cpu"}, |
|
torch_dtype=torch.float32 |
|
) |
|
|
|
|
|
prompt = """<|begin_of_text|><|start_header_id|>user<|end_header_id|> |
|
|
|
Generate a SQL query to answer this question: `{question}` |
|
|
|
DDL statements: |
|
|
|
CREATE TABLE expenses ( |
|
id INTEGER PRIMARY KEY, |
|
date DATE NOT NULL, |
|
amount DECIMAL(10,2) NOT NULL, |
|
category VARCHAR(50) NOT NULL, |
|
description TEXT, |
|
payment_method VARCHAR(20), |
|
user_id INTEGER |
|
); |
|
|
|
CREATE TABLE categories ( |
|
id INTEGER PRIMARY KEY, |
|
name VARCHAR(50) UNIQUE NOT NULL, |
|
description TEXT |
|
); |
|
|
|
CREATE TABLE users ( |
|
id INTEGER PRIMARY KEY, |
|
username VARCHAR(50) UNIQUE NOT NULL, |
|
email VARCHAR(100) UNIQUE NOT NULL, |
|
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP |
|
); |
|
|
|
CREATE TABLE budgets ( |
|
id INTEGER PRIMARY KEY, |
|
user_id INTEGER, |
|
category VARCHAR(50), |
|
amount DECIMAL(10,2) NOT NULL, |
|
period VARCHAR(20) DEFAULT 'monthly', |
|
start_date DATE, |
|
end_date DATE |
|
); |
|
|
|
-- expenses.user_id can be joined with users.id |
|
-- expenses.category can be joined with categories.name |
|
-- budgets.user_id can be joined with users.id |
|
-- budgets.category can be joined with categories.name<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
|
|
|
The following SQL query best answers the question `{question}`: |
|
```sql |
|
""" |
|
|
|
|
|
def generate_query(question): |
|
formatted_prompt = prompt.format(question=question) |
|
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cpu") |
|
|
|
generated_ids = model.generate( |
|
**inputs, |
|
num_return_sequences=1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=400, |
|
do_sample=False, |
|
num_beams=1, |
|
temperature=0.0, |
|
top_p=1, |
|
) |
|
|
|
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
try: |
|
sql_code = output.split("```sql")[1].split("```")[0].strip() |
|
return sqlparse.format(sql_code, reindent=True) |
|
except Exception: |
|
return "β SQL could not be parsed. Raw Output:\n\n" + output |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_query, |
|
inputs=gr.Textbox(lines=3, placeholder="Ask your SQL question..."), |
|
outputs="text", |
|
title="π¦ LLaMA 3 SQLCoder (CPU)", |
|
description="Convert natural language into SQL queries based on the given schema. Running on CPU β may be slow.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|