SidraTul's picture
Update app.py
56226b9 verified
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Load chatbot model
chatbot_model = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
model = AutoModelForCausalLM.from_pretrained(chatbot_model)
# Load emotion detection model
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
st.title("🧠 Mental Health Chatbot")
# Chat history
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# User Input
user_input = st.text_input("You:", key="user_input")
if st.button("Send"):
if user_input:
# Generate chatbot response
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# Detect emotion
emotion_result = emotion_pipeline(user_input)
emotion = emotion_result[0]["label"]
# Store chat history
st.session_state.chat_history.append(("You", user_input))
st.session_state.chat_history.append(("Bot", response))
# Display chat
for sender, msg in st.session_state.chat_history:
st.write(f"**{sender}:** {msg}")
# Display emotion
st.write(f"🧠 **Emotion Detected:** {emotion}")
# import streamlit as st
# from transformers import pipeline, AutoTokenizer
# # βœ… Load Emotion Recognition Model
# emotion_pipeline = pipeline("text-classification", model="ahmettasdemir/distilbert-base-uncased-finetuned-emotion")
# # βœ… Load Stress Detection Model
# stress_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
# # βœ… Load Mental Disorder Detection Model
# mental_bert_pipeline = pipeline("text-classification", model="nlpconnect/vit-gpt2-image-captioning")
# # βœ… Load PHQ-9 Depression Severity Classifier
# phq9_pipeline = pipeline("text-classification", model="PHQ-9 Depression Classifier")
# # βœ… Load Chatbot Model (DeepSeek)
# deepseek_model = "deepseek-ai/deepseek-llm-7b"
# deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model)
# deepseek_pipeline = pipeline("text-generation", model=deepseek_model, tokenizer=deepseek_tokenizer)
# # πŸ₯ Streamlit UI
# st.title("🧠 Mental Health Assistant Bot")
# user_input = st.text_input("How are you feeling today?", "")
# if st.button("Submit"):
# if user_input:
# # βœ… Emotion Analysis
# emotion_result = emotion_pipeline(user_input)[0]
# st.write(f"**Emotion Detected:** {emotion_result['label']} ({emotion_result['score']:.2f})")
# # βœ… Stress Level Analysis
# stress_result = stress_pipeline(user_input)[0]
# st.write(f"**Stress Level:** {stress_result['label']} ({stress_result['score']:.2f})")
# # βœ… Mental Health Condition Detection
# mental_health_result = mental_bert_pipeline(user_input)[0]
# st.write(f"**Possible Mental Health Condition:** {mental_health_result['label']} ({mental_health_result['score']:.2f})")
# # βœ… AI Chatbot Response
# deepseek_response = deepseek_pipeline(user_input, max_length=100, do_sample=True)[0]['generated_text']
# st.write(f"πŸ€– **Chatbot:** {deepseek_response}")