Spaces:
Sleeping
Sleeping
File size: 964 Bytes
3604a15 61a0b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import tensorflow as tf
from tensorflow.keras.layers import TextVectorization,LSTM
import gradio as gr
import pandas as pd
import os
df = pd.read_csv('train.csv')
MAX_FEATURES = 200000
vectorizer = TextVectorization(max_tokens=MAX_FEATURES,
output_sequence_length=1800,
output_mode='int')
# Adapt the vectorizer to the training data
vectorizer.adapt(df['comment_text'].values)
model = tf.keras.models.load_model('toxicity.keras')
def score_comment(comment):
vectorized_comment = vectorizer([comment])
results = model.predict(vectorized_comment)
text = ''
for idx, col in enumerate(df.columns[2:]):
text += '{}: {}\n'.format(col, results[0][idx]>0.5)
return text
interface = gr.Interface(fn=score_comment,
inputs=gr.Textbox(lines=2, placeholder='Comment to score'),
outputs='text')
interface.launch(share=True) |