File size: 14,921 Bytes
991b8c0 bfdf2ce 5dfbac5 5a418bf 5dfbac5 e0b2fe7 5dfbac5 5a418bf e0b2fe7 5a418bf e0b2fe7 5a418bf 9c538e6 5a418bf e0b2fe7 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 991b8c0 5dfbac5 5a418bf 5dfbac5 e0b2fe7 56a78b6 e0b2fe7 56a78b6 e0b2fe7 5dfbac5 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 e0b2fe7 9c538e6 e0b2fe7 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 9c538e6 5a418bf 5dfbac5 5a418bf 5dfbac5 5a418bf 5dfbac5 5a418bf 5dfbac5 5a418bf 9c538e6 5a418bf 5dfbac5 5a418bf 5dfbac5 5a418bf 5dfbac5 5a418bf 5dfbac5 5a418bf 9c538e6 5a418bf 5dfbac5 5a418bf 5dfbac5 5a418bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import spaces
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import time
import logging
import gradio as gr
import cv2
import os
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
from PIL import Image
import numpy as np
from pathlib import Path
# Cache for loaded model and processor
default_cache = {'model_id': None, 'processor': None, 'model': None, 'device': None}
model_cache = default_cache.copy()
# Check for XPU availability
has_xpu = hasattr(torch, 'xpu') and torch.xpu.is_available()
def update_model(model_id, device):
if model_cache['model_id'] != model_id or model_cache['device'] != device:
logging.info(f'Loading model {model_id} on {device}')
try:
processor = AutoProcessor.from_pretrained(model_id)
# Load model with appropriate precision for each device
if device == 'cuda':
# Use bfloat16 for CUDA for performance
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
_attn_implementation='flash_attention_2'
).to('cuda')
elif device == 'xpu' and has_xpu:
# Use float32 on XPU to avoid bfloat16 layernorm issues
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.float32
).to('xpu')
else:
# Default to float32 on CPU
model = AutoModelForImageTextToText.from_pretrained(model_id).to('cpu')
model.eval()
model_cache.update({'model_id': model_id, 'processor': processor, 'model': model, 'device': device})
except Exception as e:
logging.error(f'Error loading model: {e}')
raise e
def extract_frames_from_video(video_path, max_frames=10):
"""Extract frames from video file for processing"""
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
# Validate video file
if not video_path.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')):
raise ValueError("Unsupported video format. Please use MP4, AVI, MOV, MKV, or WEBM.")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Cannot open video file: {video_path}")
frames = []
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
if frame_count == 0:
cap.release()
raise ValueError("Video file appears to be empty or corrupted")
# Calculate step size to extract evenly distributed frames
step = max(1, frame_count // max_frames)
frame_idx = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_idx % step == 0:
# Calculate timestamp for this frame
timestamp = frame_idx / fps if fps > 0 else frame_idx
frames.append((frame, timestamp))
if len(frames) >= max_frames:
break
frame_idx += 1
cap.release()
return frames, fps
@spaces.GPU
def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device):
"""Caption a single frame (used for webcam streaming)"""
debug_msgs = []
try:
update_model(model_id, device)
processor = model_cache['processor']
model = model_cache['model']
# Control capture interval
time.sleep(interval_ms / 1000)
# Preprocess frame
t0 = time.time()
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(rgb)
temp_path = 'frame.jpg'
pil_img.save(temp_path, format='JPEG', quality=50)
debug_msgs.append(f'Preprocess: {int((time.time()-t0)*1000)} ms')
# Prepare multimodal chat messages
messages = [
{'role': 'system', 'content': [{'type': 'text', 'text': sys_prompt}]},
{'role': 'user', 'content': [
{'type': 'image', 'url': temp_path},
{'type': 'text', 'text': usr_prompt}
]}
]
# Tokenize and encode
t1 = time.time()
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors='pt'
)
# Move inputs to correct device and dtype (matching model parameters)
param_dtype = next(model.parameters()).dtype
cast_inputs = {}
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
if v.dtype.is_floating_point:
# cast floating-point tensors to model's parameter dtype
cast_inputs[k] = v.to(device=model.device, dtype=param_dtype)
else:
# move integer/mask tensors without changing dtype
cast_inputs[k] = v.to(device=model.device)
else:
cast_inputs[k] = v
inputs = cast_inputs
debug_msgs.append(f'Tokenize: {int((time.time()-t1)*1000)} ms')
# Inference
t2 = time.time()
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=128)
debug_msgs.append(f'Inference: {int((time.time()-t2)*1000)} ms')
# Decode and strip history
t3 = time.time()
raw = processor.batch_decode(outputs, skip_special_tokens=True)[0]
debug_msgs.append(f'Decode: {int((time.time()-t3)*1000)} ms')
if "Assistant:" in raw:
caption = raw.split("Assistant:")[-1].strip()
else:
lines = raw.splitlines()
caption = lines[-1].strip() if len(lines) > 1 else raw.strip()
# Clean up temp file
if os.path.exists(temp_path):
os.remove(temp_path)
return caption, '\n'.join(debug_msgs)
except Exception as e:
return f"Error: {str(e)}", '\n'.join(debug_msgs)
def process_single_frame(frame, model_id, sys_prompt, usr_prompt, device, frame_id=0):
"""Process a single frame similar to webcam mode - optimized for reuse"""
debug_msgs = []
temp_path = None
try:
# Ensure model is loaded
update_model(model_id, device)
processor = model_cache['processor']
model = model_cache['model']
# Preprocess frame
t0 = time.time()
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(rgb)
temp_path = f'video_frame_{frame_id}.jpg'
pil_img.save(temp_path, format='JPEG', quality=50)
debug_msgs.append(f'Preprocess: {int((time.time()-t0)*1000)} ms')
# Prepare multimodal chat messages
messages = [
{'role': 'system', 'content': [{'type': 'text', 'text': sys_prompt}]},
{'role': 'user', 'content': [
{'type': 'image', 'url': temp_path},
{'type': 'text', 'text': usr_prompt}
]}
]
# Tokenize and encode
t1 = time.time()
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors='pt'
)
# Move inputs to correct device and dtype (matching model parameters)
param_dtype = next(model.parameters()).dtype
cast_inputs = {}
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
if v.dtype.is_floating_point:
cast_inputs[k] = v.to(device=model.device, dtype=param_dtype)
else:
cast_inputs[k] = v.to(device=model.device)
else:
cast_inputs[k] = v
inputs = cast_inputs
debug_msgs.append(f'Tokenize: {int((time.time()-t1)*1000)} ms')
# Inference
t2 = time.time()
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=128)
debug_msgs.append(f'Inference: {int((time.time()-t2)*1000)} ms')
# Decode and strip history
t3 = time.time()
raw = processor.batch_decode(outputs, skip_special_tokens=True)[0]
debug_msgs.append(f'Decode: {int((time.time()-t3)*1000)} ms')
if "Assistant:" in raw:
caption = raw.split("Assistant:")[-1].strip()
else:
lines = raw.splitlines()
caption = lines[-1].strip() if len(lines) > 1 else raw.strip()
return caption, debug_msgs, None
except Exception as e:
return f"Error: {str(e)}", debug_msgs, str(e)
finally:
# Clean up temp file
if temp_path and os.path.exists(temp_path):
try:
os.remove(temp_path)
except Exception as cleanup_error:
logging.warning(f"Failed to cleanup {temp_path}: {cleanup_error}")
@spaces.GPU
def process_video_with_interval(video_file, model_id, sys_prompt, usr_prompt, device, max_frames, interval_ms):
"""Process video file with interval-based processing similar to webcam mode"""
if video_file is None:
return "No video file uploaded", ""
debug_msgs = []
all_captions = []
try:
# Extract frames from video
t0 = time.time()
frames_with_timestamps, fps = extract_frames_from_video(video_file, max_frames)
debug_msgs.append(f'Extracted {len(frames_with_timestamps)} frames in {int((time.time()-t0)*1000)} ms')
debug_msgs.append(f'Video FPS: {fps:.2f}')
if not frames_with_timestamps:
return "No frames could be extracted from the video", '\n'.join(debug_msgs)
# Process each frame with interval delay (similar to webcam mode)
for i, (frame, timestamp) in enumerate(frames_with_timestamps):
# Apply interval delay (similar to webcam mode)
if i > 0: # Don't delay the first frame
time.sleep(interval_ms / 1000)
# Process frame using the same logic as webcam mode
caption, frame_debug_msgs, error = process_single_frame(
frame, model_id, sys_prompt, usr_prompt, device, frame_id=i
)
# Add timing information
timestamp_str = f"{timestamp:.2f}s"
if error:
all_captions.append(f"Frame {i+1} (t={timestamp_str}): ERROR - {error}")
else:
all_captions.append(f"Frame {i+1} (t={timestamp_str}): {caption}")
# Add frame-specific debug info
debug_msgs.extend([f"Frame {i+1}: {msg}" for msg in frame_debug_msgs])
return '\n\n'.join(all_captions), '\n'.join(debug_msgs)
except Exception as e:
return f"Error processing video: {str(e)}", '\n'.join(debug_msgs)
def toggle_input_mode(input_mode):
"""Toggle between webcam and video file input"""
if input_mode == "Webcam":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
else: # Video File
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
def main():
logging.basicConfig(level=logging.INFO)
model_choices = [
'HuggingFaceTB/SmolVLM2-256M-Video-Instruct',
'HuggingFaceTB/SmolVLM2-500M-Video-Instruct',
'HuggingFaceTB/SmolVLM2-2.2B-Instruct'
]
# Determine available devices
device_options = ['cpu']
if torch.cuda.is_available():
device_options.append('cuda')
if has_xpu:
device_options.append('xpu')
default_device = 'cuda' if torch.cuda.is_available() else ('xpu' if has_xpu else 'cpu')
with gr.Blocks() as demo:
gr.Markdown('## 🎥 Real-Time Webcam & Video File Captioning with SmolVLM2 (Transformers)')
with gr.Row():
input_mode = gr.Radio(
choices=["Webcam", "Video File"],
value="Webcam",
label="Input Mode"
)
with gr.Row():
model_dd = gr.Dropdown(model_choices, value=model_choices[0], label='Model ID')
device_dd = gr.Dropdown(device_options, value=default_device, label='Device')
# Webcam-specific controls
with gr.Row() as webcam_controls:
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
# Video file-specific controls
with gr.Row(visible=False) as video_controls:
interval_video = gr.Slider(100, 10000, step=100, value=1000, label='Processing Interval (ms)')
max_frames = gr.Slider(1, 20, step=1, value=5, label='Max Frames to Process')
sys_p = gr.Textbox(lines=2, value='Describe the key action', label='System Prompt')
usr_p = gr.Textbox(lines=1, value='What is happening in this image?', label='User Prompt')
# Input components
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
video_file = gr.File(
label="Upload Video File",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
visible=False
)
# Process button for video files
process_btn = gr.Button("Process Video", visible=False)
# Output components
caption_tb = gr.Textbox(interactive=False, label='Caption')
log_tb = gr.Textbox(lines=4, interactive=False, label='Debug Log')
# Toggle input mode
input_mode.change(
fn=toggle_input_mode,
inputs=[input_mode],
outputs=[cam, video_file, process_btn]
)
# Also toggle the control panels
input_mode.change(
fn=lambda mode: (gr.update(visible=mode=="Webcam"), gr.update(visible=mode=="Video File")),
inputs=[input_mode],
outputs=[webcam_controls, video_controls]
)
# Webcam streaming
cam.stream(
fn=caption_frame,
inputs=[cam, model_dd, interval, sys_p, usr_p, device_dd],
outputs=[caption_tb, log_tb],
time_limit=600
)
# Video file processing
process_btn.click(
fn=process_video_with_interval,
inputs=[video_file, model_dd, sys_p, usr_p, device_dd, max_frames, interval_video],
outputs=[caption_tb, log_tb]
)
# Enable Gradio's async event queue
demo.queue()
# Launch the app
demo.launch()
if __name__ == '__main__':
main() |