Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import warnings | |
from typing import Any, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn.init import _calculate_fan_in_and_fan_out | |
from transformers.activations import ACT2FN | |
from transformers.utils import ( | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
) | |
from .configuration_connector import ConnectorConfig | |
if is_flash_attn_2_available(): | |
from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
logger = logging.get_logger(__name__) | |
def init_weights(module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Embedding): | |
default_flax_embed_init(module.weight) | |
elif isinstance(module, ConnectorAttention): | |
nn.init.xavier_uniform_(module.q_proj.weight) | |
nn.init.xavier_uniform_(module.k_proj.weight) | |
nn.init.xavier_uniform_(module.v_proj.weight) | |
nn.init.xavier_uniform_(module.out_proj.weight) | |
nn.init.zeros_(module.q_proj.bias) | |
nn.init.zeros_(module.k_proj.bias) | |
nn.init.zeros_(module.v_proj.bias) | |
nn.init.zeros_(module.out_proj.bias) | |
elif isinstance(module, ConnectorMLP): | |
nn.init.xavier_uniform_(module.fc1.weight) | |
nn.init.xavier_uniform_(module.fc2.weight) | |
nn.init.normal_(module.fc1.bias, std=1e-6) | |
nn.init.normal_(module.fc2.bias, std=1e-6) | |
elif isinstance(module, (nn.Linear, nn.Conv2d)): | |
lecun_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2, | |
) | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
def trunc_normal_tf_( | |
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 | |
) -> torch.Tensor: | |
"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \\leq \text{mean} \\leq b`. | |
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the | |
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 | |
and the result is subsequently scaled and shifted by the mean and std args. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
""" | |
with torch.no_grad(): | |
_trunc_normal_(tensor, 0, 1.0, a, b) | |
tensor.mul_(std).add_(mean) | |
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): | |
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | |
if mode == "fan_in": | |
denom = fan_in | |
elif mode == "fan_out": | |
denom = fan_out | |
elif mode == "fan_avg": | |
denom = (fan_in + fan_out) / 2 | |
variance = scale / denom | |
if distribution == "truncated_normal": | |
# constant is stddev of standard normal truncated to (-2, 2) | |
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) | |
elif distribution == "normal": | |
with torch.no_grad(): | |
tensor.normal_(std=math.sqrt(variance)) | |
elif distribution == "uniform": | |
bound = math.sqrt(3 * variance) | |
with torch.no_grad(): | |
tensor.uniform_(-bound, bound) | |
else: | |
raise ValueError(f"invalid distribution {distribution}") | |
def lecun_normal_(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") | |
def default_flax_embed_init(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="normal") | |
class ConnectorAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
"""Input shape: Batch x Time x Channel""" | |
batch_size, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
k_v_seq_len = key_states.shape[-2] | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | |
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights | |
class ConnectorFlashAttention2(ConnectorAttention): | |
""" | |
ConnectorAttention flash attention module. This module inherits from `ConnectorAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
is_causal = False | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
output_attentions = False | |
batch_size, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.dropout if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = _flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
is_causal=self.is_causal, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
) | |
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous() | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights | |
class ConnectorSdpaAttention(ConnectorAttention): | |
""" | |
Connector attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`ConnectorAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
is_causal = False | |
# Adapted from ConnectorAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"ConnectorModel is using ConnectorSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
) | |
batch_size, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
is_causal = True if self.is_causal and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(batch_size, q_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, None | |
CONNECTOR_ATTENTION_CLASSES = { | |
"eager": ConnectorAttention, | |
"flash_attention_2": ConnectorFlashAttention2, | |
"sdpa": ConnectorSdpaAttention, | |
} | |
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Connector | |
class ConnectorMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class ConnectorEncoderLayer(nn.Module): | |
def __init__(self, config: ConnectorConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = CONNECTOR_ATTENTION_CLASSES[config._attn_implementation](config=config) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = ConnectorMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
# Ignore copy | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): | |
Input to the layer of shape `(batch, seq_len, embed_dim)`. | |
attention_mask (`torch.FloatTensor`): | |
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | |
output_attentions (`bool`, *optional*, defaults to `False`): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Connector | |
class ConnectorEncoder(nn.Module): | |
def __init__(self, config: ConnectorConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([ConnectorEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
self.apply(init_weights) | |
def forward(self, inputs_embeds): | |
hidden_states = inputs_embeds | |
for encoder_layer in self.layers: | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
encoder_layer.__call__, | |
hidden_states, | |
None, | |
False, | |
use_reentrant=False | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
None, | |
output_attentions=False, | |
) | |
hidden_states = layer_outputs[0] | |
return hidden_states | |