Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin, SD3Transformer2DLoadersMixin | |
from diffusers.models.attention import FeedForward, JointTransformerBlock | |
from diffusers.models.attention_processor import ( | |
Attention, | |
AttentionProcessor, | |
FusedJointAttnProcessor2_0, | |
JointAttnProcessor2_0, | |
) | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero | |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class SD3SingleTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
): | |
super().__init__() | |
self.norm1 = AdaLayerNormZero(dim) | |
self.attn = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
bias=True, | |
processor=JointAttnProcessor2_0(), | |
eps=1e-6, | |
) | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor): | |
# 1. Attention | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
attn_output = self.attn(hidden_states=norm_hidden_states, encoder_hidden_states=None) | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
# 2. Feed Forward | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
return hidden_states | |
class SD3Transformer2DKontextModel( | |
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, SD3Transformer2DLoadersMixin | |
): | |
""" | |
The Transformer model introduced in [Stable Diffusion 3](https://huggingface.co/papers/2403.03206). | |
Parameters: | |
sample_size (`int`, defaults to `128`): | |
The width/height of the latents. This is fixed during training since it is used to learn a number of | |
position embeddings. | |
patch_size (`int`, defaults to `2`): | |
Patch size to turn the input data into small patches. | |
in_channels (`int`, defaults to `16`): | |
The number of latent channels in the input. | |
num_layers (`int`, defaults to `18`): | |
The number of layers of transformer blocks to use. | |
attention_head_dim (`int`, defaults to `64`): | |
The number of channels in each head. | |
num_attention_heads (`int`, defaults to `18`): | |
The number of heads to use for multi-head attention. | |
joint_attention_dim (`int`, defaults to `4096`): | |
The embedding dimension to use for joint text-image attention. | |
caption_projection_dim (`int`, defaults to `1152`): | |
The embedding dimension of caption embeddings. | |
pooled_projection_dim (`int`, defaults to `2048`): | |
The embedding dimension of pooled text projections. | |
out_channels (`int`, defaults to `16`): | |
The number of latent channels in the output. | |
pos_embed_max_size (`int`, defaults to `96`): | |
The maximum latent height/width of positional embeddings. | |
dual_attention_layers (`Tuple[int, ...]`, defaults to `()`): | |
The number of dual-stream transformer blocks to use. | |
qk_norm (`str`, *optional*, defaults to `None`): | |
The normalization to use for query and key in the attention layer. If `None`, no normalization is used. | |
""" | |
_supports_gradient_checkpointing = True | |
_no_split_modules = ["JointTransformerBlock"] | |
_skip_layerwise_casting_patterns = ["pos_embed", "norm"] | |
def __init__( | |
self, | |
sample_size: int = 128, | |
patch_size: int = 2, | |
in_channels: int = 16, | |
num_layers: int = 18, | |
attention_head_dim: int = 64, | |
num_attention_heads: int = 18, | |
joint_attention_dim: int = 4096, | |
caption_projection_dim: int = 1152, | |
pooled_projection_dim: int = 2048, | |
out_channels: int = 16, | |
pos_embed_max_size: int = 96, | |
dual_attention_layers: Tuple[ | |
int, ... | |
] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5 | |
qk_norm: Optional[str] = None, | |
): | |
super().__init__() | |
self.out_channels = out_channels if out_channels is not None else in_channels | |
self.inner_dim = num_attention_heads * attention_head_dim | |
self.pos_embed = PatchEmbed( | |
height=sample_size, | |
width=sample_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=self.inner_dim, | |
pos_embed_max_size=pos_embed_max_size, # hard-code for now. | |
) | |
self.time_text_embed = CombinedTimestepTextProjEmbeddings( | |
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim | |
) | |
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
JointTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
context_pre_only=i == num_layers - 1, | |
qk_norm=qk_norm, | |
use_dual_attention=True if i in dual_attention_layers else False, | |
) | |
for i in range(num_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
self.gradient_checkpointing = False | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking | |
def disable_forward_chunking(self): | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, None, 0) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0 | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedJointAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor = None, | |
ref_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
block_controlnet_hidden_states: List = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
skip_layers: Optional[List[int]] = None, | |
) -> Union[torch.Tensor, Transformer2DModelOutput]: | |
""" | |
The [`SD3Transformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
ref_hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`): | |
Input `ref_hidden_states`. | |
encoder_hidden_states (`torch.Tensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): | |
Embeddings projected from the embeddings of input conditions. | |
timestep (`torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
skip_layers (`list` of `int`, *optional*): | |
A list of layer indices to skip during the forward pass. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
height, width = hidden_states.shape[-2:] | |
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. | |
if ref_hidden_states is not None: | |
ref_hidden_states = self.pos_embed(ref_hidden_states) | |
assert ref_hidden_states.shape == hidden_states.shape | |
hidden_states = torch.cat([ref_hidden_states, hidden_states], dim=1) | |
temb = self.time_text_embed(timestep, pooled_projections) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: | |
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") | |
ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep) | |
joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb) | |
for index_block, block in enumerate(self.transformer_blocks): | |
# Skip specified layers | |
is_skip = True if skip_layers is not None and index_block in skip_layers else False | |
if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip: | |
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
joint_attention_kwargs, | |
) | |
elif not is_skip: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
# controlnet residual | |
if block_controlnet_hidden_states is not None and block.context_pre_only is False: | |
interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states) | |
hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)] | |
patch_size = self.config.patch_size | |
height = height // patch_size | |
width = width // patch_size | |
hidden_states = hidden_states[:, -height*width:, :] | |
hidden_states = self.norm_out(hidden_states, temb) | |
hidden_states = self.proj_out(hidden_states) | |
# unpatchify | |
hidden_states = hidden_states.reshape( | |
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) | |
) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
if __name__ == "__main__": | |
import torch | |
import argparse | |
import os | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--checkpoint", type=str, default=None) | |
parser.add_argument("--output", type=str, default=None) | |
args = parser.parse_args() | |
pretrained_model_name_or_path = "stabilityai/stable-diffusion-3.5-medium" | |
transformer = SD3Transformer2DKontextModel.from_pretrained( | |
pretrained_model_name_or_path=pretrained_model_name_or_path, | |
subfolder="transformer", | |
torch_dtype=torch.bfloat16) | |
checkpoint = torch.load(args.checkpoint) | |
checkpoint = {k[len('transformer.'):]: v for k, v in checkpoint.items() if 'transformer.' in k} | |
transformer.load_state_dict(checkpoint) | |
os.makedirs(args.output, exist_ok=True) | |
transformer.save_pretrained(args.output) | |