Soacti's picture
Update app.py
6e5d7fd verified
raw
history blame
17.1 kB
import gradio as gr
import json
import time
import os
from typing import List, Dict, Any, Optional
import random
import requests
# API key validation
def validate_api_key(api_key: str) -> bool:
"""Validate the API key against the stored secret"""
expected_key = os.environ.get("SOACTI_API_KEY")
if not expected_key:
print("WARNING: SOACTI_API_KEY not set in environment variables")
return False
return api_key == expected_key
# Improved AI Quiz generation
class AIQuizGenerator:
def __init__(self):
self.api_key = os.environ.get("HUGGINGFACE_API_KEY")
self.api_url = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
# Backup models to try
self.models = [
"microsoft/DialoGPT-large",
"google/flan-t5-large",
"facebook/blenderbot-400M-distill",
"microsoft/DialoGPT-medium"
]
print(f"AI Generator initialized. API key available: {bool(self.api_key)}")
def generate_quiz(self, tema: str, antall: int = 3, språk: str = "no") -> List[Dict[str, Any]]:
"""Generate quiz questions using Hugging Face Inference API"""
if not self.api_key:
print("❌ No Hugging Face API key - using enhanced fallback")
return self._generate_enhanced_fallback(tema, antall)
# Try multiple models until one works
for model in self.models:
try:
print(f"🤖 Trying model: {model}")
questions = self._try_model(model, tema, antall, språk)
if questions and len(questions) > 0:
print(f"✅ Success with model: {model}")
return questions
except Exception as e:
print(f"❌ Model {model} failed: {str(e)}")
continue
print("❌ All AI models failed - using enhanced fallback")
return self._generate_enhanced_fallback(tema, antall)
def _try_model(self, model: str, tema: str, antall: int, språk: str) -> List[Dict[str, Any]]:
"""Try a specific model"""
# Create a very specific prompt
prompt = self._create_specific_prompt(tema, antall, språk)
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 800,
"temperature": 0.7,
"do_sample": True,
"top_p": 0.9
}
}
api_url = f"https://api-inference.huggingface.co/models/{model}"
start_time = time.time()
response = requests.post(api_url, headers=headers, json=payload, timeout=30)
generation_time = time.time() - start_time
print(f"API Response Status: {response.status_code}")
if response.status_code != 200:
raise Exception(f"API returned {response.status_code}: {response.text}")
result = response.json()
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get("generated_text", "")
else:
generated_text = str(result)
print(f"Generated text preview: {generated_text[:200]}...")
# Parse the response
questions = self._parse_ai_response(generated_text, tema, antall)
# Add metadata
for q in questions:
q["_metadata"] = {
"model": model,
"generation_time": generation_time,
"ai_generated": True
}
return questions
def _create_specific_prompt(self, tema: str, antall: int, språk: str) -> str:
"""Create a very specific prompt for better results"""
if språk == "no":
return f"""Lag {antall} quiz-spørsmål om {tema} på norsk.
Format:
SPØRSMÅL: [konkret spørsmål om {tema}]
A) [første alternativ]
B) [andre alternativ]
C) [tredje alternativ]
D) [fjerde alternativ]
SVAR: [A, B, C eller D]
FORKLARING: [kort forklaring]
Eksempel om fotball:
SPØRSMÅL: Hvem vant Ballon d'Or i 2023?
A) Lionel Messi
B) Erling Haaland
C) Kylian Mbappé
D) Karim Benzema
SVAR: A
FORKLARING: Lionel Messi vant sin åttende Ballon d'Or i 2023.
Nå lag {antall} spørsmål om {tema}:"""
else:
return f"""Create {antall} quiz questions about {tema} in English.
Format:
QUESTION: [specific question about {tema}]
A) [first option]
B) [second option]
C) [third option]
D) [fourth option]
ANSWER: [A, B, C or D]
EXPLANATION: [brief explanation]
Now create {antall} questions about {tema}:"""
def _parse_ai_response(self, text: str, tema: str, expected_count: int) -> List[Dict[str, Any]]:
"""Parse AI response into structured questions"""
questions = []
# Split into sections
sections = text.split("SPØRSMÅL:") if "SPØRSMÅL:" in text else text.split("QUESTION:")
for section in sections[1:]: # Skip first empty section
try:
question = self._parse_single_question(section, tema)
if question:
questions.append(question)
except Exception as e:
print(f"Error parsing question section: {e}")
continue
return questions[:expected_count]
def _parse_single_question(self, section: str, tema: str) -> Optional[Dict[str, Any]]:
"""Parse a single question from text"""
lines = [line.strip() for line in section.split('\n') if line.strip()]
if not lines:
return None
question_text = lines[0].strip()
options = []
correct_answer = 0
explanation = ""
for line in lines[1:]:
if line.startswith(('A)', 'B)', 'C)', 'D)')):
options.append(line[2:].strip())
elif line.startswith(('SVAR:', 'ANSWER:')):
answer_part = line.split(':', 1)[1].strip()
if answer_part in ['A', 'B', 'C', 'D']:
correct_answer = ['A', 'B', 'C', 'D'].index(answer_part)
elif line.startswith(('FORKLARING:', 'EXPLANATION:')):
explanation = line.split(':', 1)[1].strip()
if len(options) >= 3 and question_text:
# Ensure we have 4 options
while len(options) < 4:
options.append(f"Alternativ {len(options) + 1}")
return {
"spørsmål": question_text,
"alternativer": options[:4],
"korrekt_svar": correct_answer,
"forklaring": explanation or f"Spørsmål om {tema}"
}
return None
def _generate_enhanced_fallback(self, tema: str, antall: int) -> List[Dict[str, Any]]:
"""Generate better fallback questions based on topic analysis"""
# Analyze topic to create better questions
tema_lower = tema.lower()
questions = []
# Football/Soccer specific
if any(word in tema_lower for word in ['fotball', 'football', 'soccer', 'messi', 'ronaldo', 'haaland']):
questions = [
{
"spørsmål": "Hvem regnes som en av verdens beste fotballspillere gjennom tidene?",
"alternativer": ["Lionel Messi", "Michael Jordan", "Tiger Woods", "Usain Bolt"],
"korrekt_svar": 0,
"forklaring": "Lionel Messi regnes som en av de beste fotballspillerne noensinne med 8 Ballon d'Or-priser."
},
{
"spørsmål": "Hvilket land har vunnet flest VM i fotball?",
"alternativer": ["Tyskland", "Argentina", "Brasil", "Frankrike"],
"korrekt_svar": 2,
"forklaring": "Brasil har vunnet VM i fotball 5 ganger (1958, 1962, 1970, 1994, 2002)."
},
{
"spørsmål": "Hva kalles den prestisjetunge individuelle prisen i fotball?",
"alternativer": ["Golden Boot", "Ballon d'Or", "FIFA Award", "Champions Trophy"],
"korrekt_svar": 1,
"forklaring": "Ballon d'Or er den mest prestisjetunge individuelle prisen i fotball."
}
]
# Technology specific
elif any(word in tema_lower for word in ['teknologi', 'technology', 'ai', 'computer', 'programming']):
questions = [
{
"spørsmål": f"Hva er en viktig utvikling innen {tema}?",
"alternativer": ["Kunstig intelligens", "Dampmaskin", "Hjulet", "Ild"],
"korrekt_svar": 0,
"forklaring": f"Kunstig intelligens er en av de viktigste utviklingene innen moderne {tema}."
}
]
# Generic but better questions
if not questions:
questions = [
{
"spørsmål": f"Hva er karakteristisk for {tema}?",
"alternativer": [f"Viktig egenskap ved {tema}", "Irrelevant faktor", "Tilfeldig element", "Ukjent aspekt"],
"korrekt_svar": 0,
"forklaring": f"Dette spørsmålet handler om de karakteristiske egenskapene ved {tema}."
},
{
"spørsmål": f"Hvor er {tema} mest relevant?",
"alternativer": ["I relevant kontekst", "I irrelevant sammenheng", "Ingen steder", "Overalt"],
"korrekt_svar": 0,
"forklaring": f"{tema} er mest relevant i sin naturlige kontekst."
}
]
# Add metadata to show these are fallbacks
for q in questions:
q["_metadata"] = {
"model": "enhanced_fallback",
"generation_time": 0.1,
"ai_generated": False
}
return questions[:antall]
# Initialize the AI generator
quiz_generator = AIQuizGenerator()
# API endpoint for quiz generation
def generate_quiz_api(tema: str, språk: str = "no", antall_spørsmål: int = 3,
type: str = "sted", vanskelighetsgrad: int = 3,
api_key: str = None) -> Dict[str, Any]:
"""API endpoint for quiz generation"""
if not validate_api_key(api_key):
return {
"success": False,
"message": "Ugyldig API-nøkkel",
"questions": []
}
if not tema or len(tema.strip()) < 2:
return {
"success": False,
"message": "Vennligst oppgi et tema (minimum 2 tegn)",
"questions": []
}
try:
start_time = time.time()
questions = quiz_generator.generate_quiz(tema.strip(), antall_spørsmål, språk)
total_time = time.time() - start_time
# Check if we got real AI questions or fallbacks
ai_generated = any(q.get("_metadata", {}).get("ai_generated", False) for q in questions)
model_used = questions[0].get("_metadata", {}).get("model", "unknown") if questions else "none"
return {
"success": True,
"questions": questions,
"metadata": {
"generation_time": round(total_time, 2),
"model_used": model_used,
"topic": tema,
"ai_generated": ai_generated,
"fallback_used": not ai_generated
},
"message": f"Genererte {len(questions)} spørsmål om '{tema}'" +
(" med AI" if ai_generated else " med forbedret fallback")
}
except Exception as e:
print(f"Error in generate_quiz_api: {str(e)}")
return {
"success": False,
"message": f"Feil ved generering av quiz: {str(e)}",
"questions": []
}
# Gradio interface
def generate_quiz_gradio(tema, antall, api_key=None):
"""Gradio wrapper"""
if api_key and not validate_api_key(api_key):
return "❌ **Ugyldig API-nøkkel**"
if not tema or len(tema.strip()) < 2:
return "❌ **Vennligst skriv inn et tema**"
try:
result = generate_quiz_api(tema, "no", antall, "sted", 3, api_key)
if not result["success"]:
return f"❌ **Feil:** {result['message']}"
questions = result["questions"]
metadata = result["metadata"]
# Show different info based on whether AI was used
if metadata.get("ai_generated", False):
status_icon = "🤖"
status_text = "AI-generert"
else:
status_icon = "🔄"
status_text = "Forbedret fallback"
output = f"✅ **Genererte {len(questions)} spørsmål om '{tema}'**\n\n"
output += f"{status_icon} **Type:** {status_text}\n"
output += f"⚙️ **Modell:** {metadata['model_used']}\n"
output += f"⏱️ **Tid:** {metadata['generation_time']}s\n\n"
for i, q in enumerate(questions, 1):
output += f"📝 **Spørsmål {i}:** {q['spørsmål']}\n"
for j, alt in enumerate(q['alternativer']):
marker = "✅" if j == q['korrekt_svar'] else "❌"
output += f" {chr(65+j)}) {alt} {marker}\n"
output += f"💡 **Forklaring:** {q['forklaring']}\n\n"
return output
except Exception as e:
return f"❌ **Feil:** {str(e)}"
# Health check
def health_check():
return {
"status": "healthy",
"timestamp": time.time(),
"ai_available": bool(os.environ.get("HUGGINGFACE_API_KEY"))
}
# Gradio interface
with gr.Blocks(title="SoActi AI Quiz API - Forbedret") as demo:
gr.Markdown("# 🧠 SoActi AI Quiz API - Forbedret")
gr.Markdown("**🚀 Ekte AI-generering med forbedret fallback**")
with gr.Row():
with gr.Column():
tema_input = gr.Textbox(
label="Tema",
value="verdens beste fotballspillere",
placeholder="Fotball, teknologi, historie, mat, filmer..."
)
antall_input = gr.Slider(
minimum=1,
maximum=5,
step=1,
label="Antall spørsmål",
value=3
)
api_key_input = gr.Textbox(
label="API-nøkkel",
placeholder="Skriv inn API-nøkkel...",
type="password"
)
generate_btn = gr.Button("🚀 Generer Forbedret Quiz!", variant="primary")
with gr.Column():
output = gr.Textbox(
label="Generert Quiz",
lines=20,
placeholder="Skriv inn et tema og test den forbedrede AI-genereringen!"
)
generate_btn.click(
fn=generate_quiz_gradio,
inputs=[tema_input, antall_input, api_key_input],
outputs=output
)
gr.Markdown("## 🔗 API Endepunkt")
gr.Markdown("`POST https://Soacti-soacti-ai-quiz-api.hf.space/generate-quiz`")
# FastAPI setup
from fastapi import FastAPI, HTTPException, Depends, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
app = FastAPI(title="SoActi Quiz API - Forbedret")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class QuizRequest(BaseModel):
tema: str
språk: str = "no"
antall_spørsmål: int = 3
type: str = "sted"
vanskelighetsgrad: int = 3
async def get_api_key(authorization: str = Header(None)):
if not authorization:
raise HTTPException(status_code=401, detail="API key missing")
parts = authorization.split()
if len(parts) != 2 or parts[0].lower() != "bearer":
raise HTTPException(status_code=401, detail="Invalid authorization header")
return parts[1]
@app.post("/generate-quiz")
async def api_generate_quiz(request: QuizRequest, api_key: str = Depends(get_api_key)):
result = generate_quiz_api(
request.tema,
request.språk,
request.antall_spørsmål,
request.type,
request.vanskelighetsgrad,
api_key
)
if not result["success"]:
raise HTTPException(status_code=400, detail=result["message"])
return result
@app.get("/health")
async def api_health():
return health_check()
# Mount Gradio
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)