SohomToom's picture
Update app.py
b0763cb verified
# app.py – 2025‑06 update
import os, cv2, time, psutil, shutil, tempfile, zipfile, numpy as np, gradio as gr
from paddleocr import PaddleOCR
# ------------------------------------------------------------------------
# 1. PaddleOCR – latest lightweight v5‑mobile with angle‑cls disabled
# ------------------------------------------------------------------------
ocr = PaddleOCR(
lang="en",
det_model_dir="ppocr_v5_det",
rec_model_dir="ppocr_v5_rec",
use_angle_cls=False, # comic bubbles are already horizontal
show_log=False
)
# ------------------------------------------------------------------------
# 2. Utility helpers
# ------------------------------------------------------------------------
def wait_for_cpu(th=90, interval=3, timeout=30):
"""Pause if CPU is saturated (helps on free‑tier Spaces)."""
start = time.time()
while psutil.cpu_percent(interval=1) > th:
time.sleep(interval)
if time.time() - start > timeout:
break
def classify_bg(avg, w=230, b=50, y=100):
r, g, b_ = avg
if r >= w and g >= w and b_ >= w: # white
return (255, 255, 255)
if r <= b and g <= b and b_ <= b: # black
return (0, 0, 0)
if r >= y and g >= y and b_ < y: # yellowish narration box
return (255, 255, 0)
return None
def sample_border(img, box, pad=2):
h, w = img.shape[:2]
x1, y1, x2, y2 = box
x1, x2 = max(0, x1 - pad), min(w - 1, x2 + pad)
y1, y2 = max(0, y1 - pad), min(h - 1, y2 + pad)
border = np.concatenate([
img[y1:y1+pad, x1:x2], img[y2-pad:y2, x1:x2],
img[y1:y2, x1:x1+pad], img[y1:y2, x2-pad:x2]
], axis=0)
return tuple(np.median(border.reshape(-1, 3), axis=0).astype(int))
# ------------------------------------------------------------------------
# 3. Bubble‑mask (simple heuristic: very‑light regions enclosed)
# ------------------------------------------------------------------------
def make_bubble_mask(rgb):
gray = cv2.cvtColor(rgb, cv2.COLOR_RGB2GRAY)
# threshold near‑white & narration‑yellow
_, white = cv2.threshold(gray, 230, 255, cv2.THRESH_BINARY)
# small morph closing to join dotted edges
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
mask = cv2.morphologyEx(white, cv2.MORPH_CLOSE, kernel, iterations=2)
return mask // 255 # 0/1
# ------------------------------------------------------------------------
# 4. Detect & clean
# ------------------------------------------------------------------------
def remove_text_in_bubbles(img_path, dst_path):
bgr = cv2.imread(img_path)
if bgr is None: # skip unreadable
return
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
bubble_mask = make_bubble_mask(rgb)
results = ocr.ocr(rgb, cls=False)
if not results or not results[0]:
cv2.imwrite(dst_path, bgr)
return
for line in results[0]:
box = line[0]
text, conf = line[1]
if conf < 0.4 or not text.strip():
continue
# bounding box
xs, ys = zip(*box)
x1, x2 = int(min(xs)), int(max(xs))
y1, y2 = int(min(ys)), int(max(ys))
# skip if box centre is outside bubble mask
cx, cy = int((x1+x2)/2), int((y1+y2)/2)
if bubble_mask[cy, cx] == 0:
continue # text is not inside a bubble
# dynamic padding by height
h_box = y2 - y1
pad = 2 if h_box <= 30 else 4 if h_box <= 60 else 6
x1p, y1p = max(0, x1-pad), max(0, y1-pad)
x2p, y2p = min(rgb.shape[1]-1, x2+pad), min(rgb.shape[0]-1, y2+pad)
# choose fill colour
crop = rgb[y1p:y2p, x1p:x2p]
fill = classify_bg(np.mean(crop.reshape(-1,3), axis=0))
if fill is None:
fill = sample_border(rgb, (x1, y1, x2, y2))
cv2.rectangle(bgr, (x1p, y1p), (x2p, y2p), fill, thickness=-1)
cv2.imwrite(dst_path, bgr)
# ------------------------------------------------------------------------
# 5. Gradio batch wrapper
# ------------------------------------------------------------------------
def process_folder(files):
wait_for_cpu()
out_dir = tempfile.mkdtemp()
for f in files:
fname = os.path.basename(f)
remove_text_in_bubbles(f, os.path.join(out_dir, fname))
zip_path = shutil.make_archive(out_dir, 'zip', out_dir)
return zip_path
# ------------------------------------------------------------------------
# 6. Gradio UI
# ------------------------------------------------------------------------
demo = gr.Interface(
fn=process_folder,
inputs=gr.File(file_types=[".jpg", ".jpeg", ".png"],
label="Upload comic page images",
file_count="multiple"),
outputs=gr.File(label="Download cleaned .zip"),
title="Comic Bubble Text Cleaner – PP‑OCRv5",
description=("Removes speech/thought/narration bubble text only, "
"leaving outside FX or captions untouched. "
"Powered by PaddleOCR PP‑OCRv5‑mobile."),
concurrency_limit=1
)
if __name__ == "__main__":
demo.launch()