Spaces:
Running
Running
# app.py | |
import os | |
import shutil | |
import tempfile | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
from paddleocr import PaddleOCR | |
ocr = PaddleOCR(use_angle_cls=True, lang='en', det_model_dir='models/det', rec_model_dir='models/rec', cls_model_dir='models/cls') | |
def classify_background_color(avg_color, white_thresh=230, black_thresh=50, yellow_thresh=100): | |
r, g, b = avg_color | |
if r >= white_thresh and g >= white_thresh and b >= white_thresh: | |
return (255, 255, 255) | |
if r <= black_thresh and g <= black_thresh and b <= black_thresh: | |
return (0, 0, 0) | |
if r >= yellow_thresh and g >= yellow_thresh and b < yellow_thresh: | |
return (255, 255, 0) | |
return None | |
def sample_border_color(image, box, padding=2): | |
h, w = image.shape[:2] | |
x_min, y_min, x_max, y_max = box | |
x_min = max(0, x_min - padding) | |
x_max = min(w-1, x_max + padding) | |
y_min = max(0, y_min - padding) | |
y_max = min(h-1, y_max + padding) | |
top = image[y_min:y_min+padding, x_min:x_max] | |
bottom = image[y_max-padding:y_max, x_min:x_max] | |
left = image[y_min:y_max, x_min:x_min+padding] | |
right = image[y_min:y_max, x_max-padding:x_max] | |
border_pixels = np.vstack((top.reshape(-1, 3), bottom.reshape(-1, 3), | |
left.reshape(-1, 3), right.reshape(-1, 3))) | |
if border_pixels.size == 0: | |
return (255, 255, 255) | |
median_color = np.median(border_pixels, axis=0) | |
return tuple(map(int, median_color)) | |
def detect_text_boxes(image): | |
results = ocr.ocr(image, cls=True) | |
if not results or not results[0]: | |
return [] | |
boxes = [] | |
for line in results[0]: | |
box, (text, confidence) = line | |
if text.strip(): | |
x_min = int(min(pt[0] for pt in box)) | |
x_max = int(max(pt[0] for pt in box)) | |
y_min = int(min(pt[1] for pt in box)) | |
y_max = int(max(pt[1] for pt in box)) | |
boxes.append(((x_min, y_min, x_max, y_max), text, confidence)) | |
return boxes | |
def remove_text_dynamic_fill(img_path, output_path): | |
image = cv2.imread(img_path) | |
if image is None: | |
return | |
if len(image.shape) == 2: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
elif image.shape[2] == 1: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
else: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
boxes = detect_text_boxes(image) | |
for (bbox, text, confidence) in boxes: | |
if confidence < 0.4 or not text.strip(): | |
continue | |
x_min, y_min, x_max, y_max = bbox | |
height = y_max - y_min | |
if height <= 30: | |
padding = 2 | |
elif height <= 60: | |
padding = 4 | |
else: | |
padding = 6 | |
x_min_p = max(0, x_min - padding) | |
y_min_p = max(0, y_min - padding) | |
x_max_p = min(image.shape[1]-1, x_max + padding) | |
y_max_p = min(image.shape[0]-1, y_max + padding) | |
sample_crop = image[y_min_p:y_max_p, x_min_p:x_max_p] | |
avg_color = np.mean(sample_crop.reshape(-1, 3), axis=0) | |
fill_color = classify_background_color(avg_color) | |
if fill_color is None: | |
fill_color = sample_border_color(image, (x_min, y_min, x_max, y_max)) | |
cv2.rectangle(image, (x_min_p, y_min_p), (x_max_p, y_max_p), fill_color, -1) | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
cv2.imwrite(output_path, image) | |
def process_folder(input_files): | |
temp_output = tempfile.mkdtemp() | |
for file in input_files: | |
filename = os.path.basename(file.name) | |
output_path = os.path.join(temp_output, filename) | |
remove_text_dynamic_fill(file.name, output_path) | |
zip_path = shutil.make_archive(temp_output, 'zip', temp_output) | |
return zip_path | |
demo = gr.Interface( | |
fn=process_folder, | |
inputs=gr.File(file_types=[".jpg", ".jpeg", ".png"], file_count="multiple", label="Upload Comic Images"), | |
outputs=gr.File(label="Download Cleaned Zip"), | |
title="Comic Text Cleaner", | |
description="Upload comic images and get a zip of cleaned versions (text removed). Uses PaddleOCR for detection." | |
) | |
demo.launch() | |