Spaces:
Sleeping
Sleeping
File size: 1,050 Bytes
db38930 0b349f0 2b04b62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import os
os.system("pip install joblib scikit-learn")
import gradio as gr
import joblib
import numpy as np
# Load the trained model
model = joblib.load("iris_decision_tree.pkl")
# Prediction function
def predict_species(sepal_length, sepal_width, petal_length, petal_width):
input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
prediction = model.predict(input_data)[0]
species = ["setosa", "versicolor", "virginica"]
return f"The predicted Iris species is: 🌸 {species[prediction]}"
# Gradio interface
iface = gr.Interface(
fn=predict_species,
inputs=[
gr.Number(label="Sepal Length (cm)"),
gr.Number(label="Sepal Width (cm)"),
gr.Number(label="Petal Length (cm)"),
gr.Number(label="Petal Width (cm)")
],
outputs=gr.Textbox(label="Prediction"),
title="Iris Flower Species Predictor",
description="Enter flower measurements to predict its species using a Decision Tree model."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
|