Spaces:
Sleeping
Sleeping
import os | |
os.system("pip install joblib scikit-learn") | |
import gradio as gr | |
import joblib | |
import numpy as np | |
# Load the trained model | |
model = joblib.load("iris_decision_tree.pkl") | |
# Prediction function | |
def predict_species(sepal_length, sepal_width, petal_length, petal_width): | |
input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]]) | |
prediction = model.predict(input_data)[0] | |
species = ["setosa", "versicolor", "virginica"] | |
return f"The predicted Iris species is: ๐ธ {species[prediction]}" | |
# Gradio interface | |
iface = gr.Interface( | |
fn=predict_species, | |
inputs=[ | |
gr.Number(label="Sepal Length (cm)"), | |
gr.Number(label="Sepal Width (cm)"), | |
gr.Number(label="Petal Length (cm)"), | |
gr.Number(label="Petal Width (cm)") | |
], | |
outputs=gr.Textbox(label="Prediction"), | |
title="Iris Flower Species Predictor", | |
description="Enter flower measurements to predict its species using a Decision Tree model." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |