Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
# Load sentiment and NER pipelines | |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
ner_tagger = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple") | |
# Supported translation models | |
translation_models = { | |
"Hindi": "Helsinki-NLP/opus-mt-en-hi", | |
"French": "Helsinki-NLP/opus-mt-en-fr" | |
} | |
# Load translation pipelines | |
translation_pipelines = { | |
lang: pipeline("translation", model=model_id) | |
for lang, model_id in translation_models.items() | |
} | |
def nlp_assistant(sentence, language): | |
sentiment_result = sentiment_analyzer(sentence)[0] | |
sentiment = f"{sentiment_result['label']} (Confidence: {sentiment_result['score']:.2f})" | |
ner_result = ner_tagger(sentence) | |
named_entities = "\n".join([f"{ent['word']} ({ent['entity_group']})" for ent in ner_result]) if ner_result else "No named entities found." | |
translator = translation_pipelines[language] | |
translation = translator(sentence)[0]['translation_text'] | |
return sentiment, named_entities, translation | |
iface = gr.Interface( | |
fn=nlp_assistant, | |
inputs=[ | |
gr.Textbox(lines=2, label="Enter an English sentence"), | |
gr.Dropdown(choices=list(translation_models.keys()), label="Choose Translation Language") | |
], | |
outputs=[ | |
gr.Textbox(label="π§ Sentiment Analysis"), | |
gr.Textbox(label="π Named Entity Recognition"), | |
gr.Textbox(label="π Translation") | |
], | |
title="π§ Mini NLP AI Assistant", | |
description="Analyze sentiment, detect named entities, and translate to Hindi or French using Hugging Face Transformers." | |
) | |
iface.launch() | |