Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""app.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1vvN4x-mEuGtdgL2zlzu2ci6sercypfCa | |
""" | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
from keras.models import Sequential | |
from keras.layers import SimpleRNN, Dense | |
from sklearn.preprocessing import MinMaxScaler | |
# Generate dummy stock price data | |
def generate_dummy_data(): | |
np.random.seed(0) | |
time_steps = 100 | |
x = np.linspace(0, 20, time_steps) | |
prices = 50 + np.sin(x) * 10 + np.random.normal(0, 1, time_steps) | |
return prices | |
# Preprocess data | |
def prepare_data(data, window_size): | |
X, y = [], [] | |
for i in range(len(data) - window_size): | |
X.append(data[i:i + window_size]) | |
y.append(data[i + window_size]) | |
return np.array(X), np.array(y) | |
# Create and train RNN model | |
def train_model(): | |
raw_prices = generate_dummy_data().reshape(-1, 1) | |
scaler = MinMaxScaler() | |
scaled_prices = scaler.fit_transform(raw_prices) | |
window_size = 5 | |
X, y = prepare_data(scaled_prices, window_size) | |
X = X.reshape((X.shape[0], X.shape[1], 1)) | |
model = Sequential([ | |
SimpleRNN(50, activation='relu', input_shape=(window_size, 1)), | |
Dense(1) | |
]) | |
model.compile(optimizer='adam', loss='mse') | |
model.fit(X, y, epochs=30, verbose=0) | |
return model, scaler, window_size | |
model, scaler, window_size = train_model() | |
# Prediction function for Gradio | |
def predict_next_prices(inputs): | |
inputs = [float(i) for i in inputs.split(',')] | |
if len(inputs) != window_size: | |
return f"Please enter {window_size} comma-separated values." | |
input_array = np.array(inputs).reshape(-1, 1) | |
scaled_input = scaler.transform(input_array).reshape((1, window_size, 1)) | |
scaled_prediction = model.predict(scaled_input)[0][0] | |
predicted_price = scaler.inverse_transform([[scaled_prediction]])[0][0] | |
return f"Predicted Next Price: ₹{predicted_price:.2f}" | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=predict_next_prices, | |
inputs=gr.Textbox(label=f"Enter last {window_size} stock prices (comma-separated)"), | |
outputs="text", | |
title="RNN Stock Price Predictor (Dummy Data)", | |
description="Enter previous prices to predict the next value." | |
) | |
if __name__ == "__main__": | |
demo.launch() |