|
import streamlit as st
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import warnings
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
df = pd.read_csv(r"C:\Users\91879\Downloads\data.csv")
|
|
df.fillna(df.mean(), inplace=True)
|
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["π Project Overview", "π EDA", "π Fault Prediction"])
|
|
|
|
|
|
with tab1:
|
|
st.header("π Brake System Fault Detection")
|
|
st.markdown("### π§© Business Problem")
|
|
|
|
st.markdown("""
|
|
In the automotive industry, ensuring the safety and reliability of braking systems is **mission-critical**. Traditional brake inspections are typically **manual and reactive**, often identifying problems **only after they occur** or during scheduled maintenance.
|
|
|
|
However, undetected faults in braking systems can lead to:
|
|
- **Brake failure during operation**
|
|
- **Reduced vehicle control**
|
|
- **Increased risk of accidents**
|
|
- **Expensive emergency repairs**
|
|
|
|
Manufacturers and fleet managers need a **real-time fault detection system** using **sensor data** to:
|
|
- Monitor brake system health continuously
|
|
- **Predict faults proactively**
|
|
- **Minimize vehicle downtime**
|
|
- Enhance **safety, reliability, and cost-efficiency**
|
|
""")
|
|
|
|
|
|
feature_desc = {
|
|
'Brake_Pressure': "Pressure applied to the brake pedal.",
|
|
'Pad_Wear_Level': "Indicates the wear level of brake pads.",
|
|
'ABS_Status': "1 if Anti-lock Braking System is active, else 0.",
|
|
'Wheel_Speed_FL': "Speed of the front-left wheel.",
|
|
'Wheel_Speed_FR': "Speed of the front-right wheel.",
|
|
'Wheel_Speed_RL': "Speed of the rear-left wheel.",
|
|
'Wheel_Speed_RR': "Speed of the rear-right wheel.",
|
|
'Fluid_Temperature': "Temperature of the brake fluid.",
|
|
'Pedal_Position': "How far the brake pedal is pressed."
|
|
}
|
|
|
|
selected = st.selectbox("Select a feature to understand:", list(feature_desc.keys()))
|
|
st.info(f"π **{selected}**: {feature_desc[selected]}")
|
|
|
|
|
|
st.markdown("### π― Goal")
|
|
st.markdown("""
|
|
Build a data-driven model that detects braking system faults using sensor data such as brake pressure, wheel speeds, fluid temperature, and pedal position.
|
|
""")
|
|
|
|
|
|
st.markdown("### π Business Objective")
|
|
st.markdown("""
|
|
- Detect faults early to reduce vehicle failure risks.
|
|
- Analyze sensor behavior during fault vs non-fault conditions.
|
|
- Support preventive maintenance using historical data patterns.
|
|
""")
|
|
|
|
st.markdown("### π Data Understanding")
|
|
st.markdown("""
|
|
The dataset contains **real-time sensor readings** collected from a vehicle's braking system to detect faults.
|
|
|
|
#### π’ Numerical Features:
|
|
- **Brake_Pressure**
|
|
- **Pad_Wear_Level**
|
|
- **Wheel_Speed_FL**, **Wheel_Speed_FR**, **Wheel_Speed_RL**, **Wheel_Speed_RR**
|
|
- **Fluid_Temperature**
|
|
- **Pedal_Position**
|
|
|
|
#### π Categorical Feature:
|
|
- **ABS_Status**: `1` = Active, `0` = Inactive
|
|
|
|
#### π― Target Variable:
|
|
- **Fault**: `1` = Fault Detected, `0` = No Fault
|
|
""")
|
|
|
|
|
|
with tab2:
|
|
st.title("π Exploratory Data Analysis")
|
|
|
|
st.subheader("π View Dataset Preview")
|
|
if st.button("π Show Dataset Head"):
|
|
st.dataframe(df.head())
|
|
|
|
st.subheader("β οΈ Fault Distribution")
|
|
fault_counts = df['Fault'].value_counts()
|
|
st.bar_chart(fault_counts)
|
|
st.write(df['Fault'].value_counts(normalize=True) * 100)
|
|
|
|
st.subheader("π Correlation Heatmap")
|
|
corr = df.corr()
|
|
fig, ax = plt.subplots(figsize=(10, 8))
|
|
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax)
|
|
st.pyplot(fig)
|
|
|
|
st.markdown("### π Feature Distributions by Fault")
|
|
features = ['Brake_Pressure', 'Pad_Wear_Level', 'Wheel_Speed_FL', 'Wheel_Speed_FR',
|
|
'Wheel_Speed_RL', 'Wheel_Speed_RR', 'Fluid_Temperature', 'Pedal_Position']
|
|
|
|
for feature in features:
|
|
st.markdown(f"#### π {feature}")
|
|
fig, ax = plt.subplots()
|
|
sns.kdeplot(data=df, x=feature, hue="Fault", fill=True, common_norm=False, alpha=0.4, ax=ax)
|
|
st.pyplot(fig)
|
|
|
|
st.markdown("### π¦ Boxplots to Compare Fault vs Normal")
|
|
for feature in features:
|
|
st.markdown(f"#### π¦ {feature} vs Fault")
|
|
fig, ax = plt.subplots()
|
|
sns.boxplot(data=df, x='Fault', y=feature, palette="Set2", ax=ax)
|
|
st.pyplot(fig)
|
|
|
|
st.markdown("### π Scatterplots: Detect Patterns or Anomalies")
|
|
st.markdown("These help you check combinations of features with color-coded fault info.")
|
|
|
|
fig, ax = plt.subplots()
|
|
sns.scatterplot(data=df, x="Brake_Pressure", y="Pad_Wear_Level", hue="Fault", palette="Set1", ax=ax)
|
|
ax.set_title("Brake Pressure vs Pad Wear Level")
|
|
st.pyplot(fig)
|
|
|
|
fig, ax = plt.subplots()
|
|
sns.scatterplot(data=df, x="Pedal_Position", y="Fluid_Temperature", hue="Fault", palette="Set2", ax=ax)
|
|
ax.set_title("Pedal Position vs Fluid Temperature")
|
|
st.pyplot(fig)
|
|
|
|
|
|
with tab3:
|
|
st.markdown(
|
|
"""
|
|
<style>
|
|
.stApp {
|
|
background-color: #e3f2fd;
|
|
padding: 12px;
|
|
}
|
|
</style>
|
|
""",
|
|
unsafe_allow_html=True
|
|
)
|
|
|
|
st.markdown("## π Vehicle Brake System Fault Detection")
|
|
st.markdown("#### Enter Brake Sensor Values to Predict Any System Fault")
|
|
|
|
|
|
X = df.drop("Fault", axis=1)
|
|
y = df["Fault"]
|
|
|
|
|
|
Brake_Pressure = st.slider("π¨ Brake Pressure (psi)", 50.0, 500.0, step=0.1)
|
|
Pad_Wear_Level = st.slider("π Pad Wear Level (%)", 0.0, 100.0, step=0.1)
|
|
ABS_Status = st.slider("π ABS Status (0 = Off, 1 = On)", 0, 1, step=1)
|
|
Wheel_Speed_FL = st.slider("βοΈ Wheel Speed FL (km/h)", 0.0, 400.0, step=0.1)
|
|
Wheel_Speed_FR = st.slider("βοΈ Wheel Speed FR (km/h)", 0.0, 400.0, step=0.1)
|
|
Wheel_Speed_RL = st.slider("βοΈ Wheel Speed RL (km/h)", 0.0, 300.0, step=0.1)
|
|
Wheel_Speed_RR = st.slider("βοΈ Wheel Speed RR (km/h)", 0.0, 300.0, step=0.1)
|
|
Fluid_Temperature = st.slider("π‘οΈ Fluid Temperature (Β°C)", -20.0, 150.0, step=0.1)
|
|
Pedal_Position = st.slider("π¦Ά Pedal Position (%)", 0.0, 100.0, step=0.1)
|
|
|
|
|
|
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=29)
|
|
model = LogisticRegression()
|
|
model.fit(x_train, y_train)
|
|
|
|
user_input = pd.DataFrame([[Brake_Pressure, Pad_Wear_Level, ABS_Status, Wheel_Speed_FL,
|
|
Wheel_Speed_FR, Wheel_Speed_RL, Wheel_Speed_RR,
|
|
Fluid_Temperature, Pedal_Position]],
|
|
columns=X.columns)
|
|
|
|
if st.button("π Predict Brake Fault"):
|
|
y_pred = model.predict(user_input)
|
|
prob = model.predict_proba(user_input)[0][1]
|
|
|
|
if y_pred[0] == 1:
|
|
st.error(f"π¨ Fault Detected in Brake System! (Confidence: {prob:.2%})")
|
|
issues = []
|
|
|
|
if Brake_Pressure < 60 or Brake_Pressure > 130:
|
|
issues.append("π΄ Abnormal Brake Pressure")
|
|
|
|
if Pad_Wear_Level >= 80:
|
|
issues.append("π Brake Pads Critically Worn")
|
|
elif Pad_Wear_Level >= 60:
|
|
issues.append("π‘ Brake Pads Heavily Worn")
|
|
|
|
if ABS_Status == 0:
|
|
issues.append("π΅ ABS System Not Active")
|
|
|
|
if Wheel_Speed_FL < 0 or Wheel_Speed_FL > 130:
|
|
issues.append("π΄ Front Left Wheel Speed Abnormal")
|
|
if Wheel_Speed_FR < 0 or Wheel_Speed_FR > 130:
|
|
issues.append("π΄ Front Right Wheel Speed Abnormal")
|
|
if Wheel_Speed_RL < 0 or Wheel_Speed_RL > 130:
|
|
issues.append("π΄ Rear Left Wheel Speed Abnormal")
|
|
if Wheel_Speed_RR < 0 or Wheel_Speed_RR > 130:
|
|
issues.append("π΄ Rear Right Wheel Speed Abnormal")
|
|
|
|
if Fluid_Temperature < -20 or Fluid_Temperature > 120:
|
|
issues.append("π₯ Abnormal Brake Fluid Temperature")
|
|
|
|
if 20 < Pedal_Position < 60:
|
|
issues.append("π‘ Moderate Brake Pedal Pressed")
|
|
if 60 <= Pedal_Position <= 100:
|
|
issues.append("π Brake Pedal Fully Pressed")
|
|
if Pedal_Position <= 20:
|
|
issues.append("π Low Brake Pedal Engagement")
|
|
|
|
for issue in issues:
|
|
st.markdown(f"- {issue}")
|
|
|
|
else:
|
|
st.success(f"β
No Fault Detected. (Confidence: {1 - prob:.2%})")
|
|
st.info("π Your vehicle's brake system appears healthy.")
|
|
|