Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import warnings
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.metrics import accuracy_score
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
|
13 |
+
# Load the dataset
|
14 |
+
df = pd.read_csv(r"C:\Users\91879\Downloads\data.csv")
|
15 |
+
df.fillna(df.mean(), inplace=True)
|
16 |
+
|
17 |
+
# Create Tabs
|
18 |
+
tab1, tab2, tab3 = st.tabs(["π Project Overview", "π EDA", "π Fault Prediction"])
|
19 |
+
|
20 |
+
# ----------------------------- TAB 1 ---------------------------------
|
21 |
+
with tab1:
|
22 |
+
st.header("π Brake System Fault Detection")
|
23 |
+
st.markdown("### π§© Business Problem")
|
24 |
+
|
25 |
+
st.markdown("""
|
26 |
+
In the automotive industry, ensuring the safety and reliability of braking systems is **mission-critical**. Traditional brake inspections are typically **manual and reactive**, often identifying problems **only after they occur** or during scheduled maintenance.
|
27 |
+
|
28 |
+
However, undetected faults in braking systems can lead to:
|
29 |
+
- **Brake failure during operation**
|
30 |
+
- **Reduced vehicle control**
|
31 |
+
- **Increased risk of accidents**
|
32 |
+
- **Expensive emergency repairs**
|
33 |
+
|
34 |
+
Manufacturers and fleet managers need a **real-time fault detection system** using **sensor data** to:
|
35 |
+
- Monitor brake system health continuously
|
36 |
+
- **Predict faults proactively**
|
37 |
+
- **Minimize vehicle downtime**
|
38 |
+
- Enhance **safety, reliability, and cost-efficiency**
|
39 |
+
""")
|
40 |
+
|
41 |
+
|
42 |
+
feature_desc = {
|
43 |
+
'Brake_Pressure': "Pressure applied to the brake pedal.",
|
44 |
+
'Pad_Wear_Level': "Indicates the wear level of brake pads.",
|
45 |
+
'ABS_Status': "1 if Anti-lock Braking System is active, else 0.",
|
46 |
+
'Wheel_Speed_FL': "Speed of the front-left wheel.",
|
47 |
+
'Wheel_Speed_FR': "Speed of the front-right wheel.",
|
48 |
+
'Wheel_Speed_RL': "Speed of the rear-left wheel.",
|
49 |
+
'Wheel_Speed_RR': "Speed of the rear-right wheel.",
|
50 |
+
'Fluid_Temperature': "Temperature of the brake fluid.",
|
51 |
+
'Pedal_Position': "How far the brake pedal is pressed."
|
52 |
+
}
|
53 |
+
|
54 |
+
selected = st.selectbox("Select a feature to understand:", list(feature_desc.keys()))
|
55 |
+
st.info(f"π **{selected}**: {feature_desc[selected]}")
|
56 |
+
|
57 |
+
# π― Goal
|
58 |
+
st.markdown("### π― Goal")
|
59 |
+
st.markdown("""
|
60 |
+
Build a data-driven model that detects braking system faults using sensor data such as brake pressure, wheel speeds, fluid temperature, and pedal position.
|
61 |
+
""")
|
62 |
+
|
63 |
+
# πΌ Business Objective
|
64 |
+
st.markdown("### π Business Objective")
|
65 |
+
st.markdown("""
|
66 |
+
- Detect faults early to reduce vehicle failure risks.
|
67 |
+
- Analyze sensor behavior during fault vs non-fault conditions.
|
68 |
+
- Support preventive maintenance using historical data patterns.
|
69 |
+
""")
|
70 |
+
|
71 |
+
st.markdown("### π Data Understanding")
|
72 |
+
st.markdown("""
|
73 |
+
The dataset contains **real-time sensor readings** collected from a vehicle's braking system to detect faults.
|
74 |
+
|
75 |
+
#### π’ Numerical Features:
|
76 |
+
- **Brake_Pressure**
|
77 |
+
- **Pad_Wear_Level**
|
78 |
+
- **Wheel_Speed_FL**, **Wheel_Speed_FR**, **Wheel_Speed_RL**, **Wheel_Speed_RR**
|
79 |
+
- **Fluid_Temperature**
|
80 |
+
- **Pedal_Position**
|
81 |
+
|
82 |
+
#### π Categorical Feature:
|
83 |
+
- **ABS_Status**: `1` = Active, `0` = Inactive
|
84 |
+
|
85 |
+
#### π― Target Variable:
|
86 |
+
- **Fault**: `1` = Fault Detected, `0` = No Fault
|
87 |
+
""")
|
88 |
+
|
89 |
+
# ----------------------------- TAB 2 ---------------------------------
|
90 |
+
with tab2:
|
91 |
+
st.title("π Exploratory Data Analysis")
|
92 |
+
|
93 |
+
st.subheader("π View Dataset Preview")
|
94 |
+
if st.button("π Show Dataset Head"):
|
95 |
+
st.dataframe(df.head())
|
96 |
+
|
97 |
+
st.subheader("β οΈ Fault Distribution")
|
98 |
+
fault_counts = df['Fault'].value_counts()
|
99 |
+
st.bar_chart(fault_counts)
|
100 |
+
st.write(df['Fault'].value_counts(normalize=True) * 100)
|
101 |
+
|
102 |
+
st.subheader("π Correlation Heatmap")
|
103 |
+
corr = df.corr()
|
104 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
105 |
+
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", ax=ax)
|
106 |
+
st.pyplot(fig)
|
107 |
+
|
108 |
+
st.markdown("### π Feature Distributions by Fault")
|
109 |
+
features = ['Brake_Pressure', 'Pad_Wear_Level', 'Wheel_Speed_FL', 'Wheel_Speed_FR',
|
110 |
+
'Wheel_Speed_RL', 'Wheel_Speed_RR', 'Fluid_Temperature', 'Pedal_Position']
|
111 |
+
|
112 |
+
for feature in features:
|
113 |
+
st.markdown(f"#### π {feature}")
|
114 |
+
fig, ax = plt.subplots()
|
115 |
+
sns.kdeplot(data=df, x=feature, hue="Fault", fill=True, common_norm=False, alpha=0.4, ax=ax)
|
116 |
+
st.pyplot(fig)
|
117 |
+
|
118 |
+
st.markdown("### π¦ Boxplots to Compare Fault vs Normal")
|
119 |
+
for feature in features:
|
120 |
+
st.markdown(f"#### π¦ {feature} vs Fault")
|
121 |
+
fig, ax = plt.subplots()
|
122 |
+
sns.boxplot(data=df, x='Fault', y=feature, palette="Set2", ax=ax)
|
123 |
+
st.pyplot(fig)
|
124 |
+
|
125 |
+
st.markdown("### π Scatterplots: Detect Patterns or Anomalies")
|
126 |
+
st.markdown("These help you check combinations of features with color-coded fault info.")
|
127 |
+
|
128 |
+
fig, ax = plt.subplots()
|
129 |
+
sns.scatterplot(data=df, x="Brake_Pressure", y="Pad_Wear_Level", hue="Fault", palette="Set1", ax=ax)
|
130 |
+
ax.set_title("Brake Pressure vs Pad Wear Level")
|
131 |
+
st.pyplot(fig)
|
132 |
+
|
133 |
+
fig, ax = plt.subplots()
|
134 |
+
sns.scatterplot(data=df, x="Pedal_Position", y="Fluid_Temperature", hue="Fault", palette="Set2", ax=ax)
|
135 |
+
ax.set_title("Pedal Position vs Fluid Temperature")
|
136 |
+
st.pyplot(fig)
|
137 |
+
|
138 |
+
# ----------------------------- TAB 3 ---------------------------------
|
139 |
+
with tab3:
|
140 |
+
st.markdown(
|
141 |
+
"""
|
142 |
+
<style>
|
143 |
+
.stApp {
|
144 |
+
background-color: #e3f2fd;
|
145 |
+
padding: 12px;
|
146 |
+
}
|
147 |
+
</style>
|
148 |
+
""",
|
149 |
+
unsafe_allow_html=True
|
150 |
+
)
|
151 |
+
|
152 |
+
st.markdown("## π Vehicle Brake System Fault Detection")
|
153 |
+
st.markdown("#### Enter Brake Sensor Values to Predict Any System Fault")
|
154 |
+
|
155 |
+
# Prepare data
|
156 |
+
X = df.drop("Fault", axis=1)
|
157 |
+
y = df["Fault"]
|
158 |
+
|
159 |
+
# UI for user input
|
160 |
+
Brake_Pressure = st.slider("π¨ Brake Pressure (psi)", 50.0, 500.0, step=0.1)
|
161 |
+
Pad_Wear_Level = st.slider("π Pad Wear Level (%)", 0.0, 100.0, step=0.1)
|
162 |
+
ABS_Status = st.slider("π ABS Status (0 = Off, 1 = On)", 0, 1, step=1)
|
163 |
+
Wheel_Speed_FL = st.slider("βοΈ Wheel Speed FL (km/h)", 0.0, 400.0, step=0.1)
|
164 |
+
Wheel_Speed_FR = st.slider("βοΈ Wheel Speed FR (km/h)", 0.0, 400.0, step=0.1)
|
165 |
+
Wheel_Speed_RL = st.slider("βοΈ Wheel Speed RL (km/h)", 0.0, 300.0, step=0.1)
|
166 |
+
Wheel_Speed_RR = st.slider("βοΈ Wheel Speed RR (km/h)", 0.0, 300.0, step=0.1)
|
167 |
+
Fluid_Temperature = st.slider("π‘οΈ Fluid Temperature (Β°C)", -20.0, 150.0, step=0.1)
|
168 |
+
Pedal_Position = st.slider("π¦Ά Pedal Position (%)", 0.0, 100.0, step=0.1)
|
169 |
+
|
170 |
+
# Train model
|
171 |
+
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=29)
|
172 |
+
model = LogisticRegression()
|
173 |
+
model.fit(x_train, y_train)
|
174 |
+
|
175 |
+
user_input = pd.DataFrame([[Brake_Pressure, Pad_Wear_Level, ABS_Status, Wheel_Speed_FL,
|
176 |
+
Wheel_Speed_FR, Wheel_Speed_RL, Wheel_Speed_RR,
|
177 |
+
Fluid_Temperature, Pedal_Position]],
|
178 |
+
columns=X.columns)
|
179 |
+
|
180 |
+
if st.button("π Predict Brake Fault"):
|
181 |
+
y_pred = model.predict(user_input)
|
182 |
+
prob = model.predict_proba(user_input)[0][1]
|
183 |
+
|
184 |
+
if y_pred[0] == 1:
|
185 |
+
st.error(f"π¨ Fault Detected in Brake System! (Confidence: {prob:.2%})")
|
186 |
+
issues = []
|
187 |
+
|
188 |
+
if Brake_Pressure < 60 or Brake_Pressure > 130:
|
189 |
+
issues.append("π΄ Abnormal Brake Pressure")
|
190 |
+
|
191 |
+
if Pad_Wear_Level >= 80:
|
192 |
+
issues.append("π Brake Pads Critically Worn")
|
193 |
+
elif Pad_Wear_Level >= 60:
|
194 |
+
issues.append("π‘ Brake Pads Heavily Worn")
|
195 |
+
|
196 |
+
if ABS_Status == 0:
|
197 |
+
issues.append("π΅ ABS System Not Active")
|
198 |
+
|
199 |
+
if Wheel_Speed_FL < 0 or Wheel_Speed_FL > 130:
|
200 |
+
issues.append("π΄ Front Left Wheel Speed Abnormal")
|
201 |
+
if Wheel_Speed_FR < 0 or Wheel_Speed_FR > 130:
|
202 |
+
issues.append("π΄ Front Right Wheel Speed Abnormal")
|
203 |
+
if Wheel_Speed_RL < 0 or Wheel_Speed_RL > 130:
|
204 |
+
issues.append("π΄ Rear Left Wheel Speed Abnormal")
|
205 |
+
if Wheel_Speed_RR < 0 or Wheel_Speed_RR > 130:
|
206 |
+
issues.append("π΄ Rear Right Wheel Speed Abnormal")
|
207 |
+
|
208 |
+
if Fluid_Temperature < -20 or Fluid_Temperature > 120:
|
209 |
+
issues.append("π₯ Abnormal Brake Fluid Temperature")
|
210 |
+
|
211 |
+
if 20 < Pedal_Position < 60:
|
212 |
+
issues.append("π‘ Moderate Brake Pedal Pressed")
|
213 |
+
if 60 <= Pedal_Position <= 100:
|
214 |
+
issues.append("π Brake Pedal Fully Pressed")
|
215 |
+
if Pedal_Position <= 20:
|
216 |
+
issues.append("π Low Brake Pedal Engagement")
|
217 |
+
|
218 |
+
for issue in issues:
|
219 |
+
st.markdown(f"- {issue}")
|
220 |
+
|
221 |
+
else:
|
222 |
+
st.success(f"β
No Fault Detected. (Confidence: {1 - prob:.2%})")
|
223 |
+
st.info("π Your vehicle's brake system appears healthy.")
|