Spaces:
Sleeping
Sleeping
import streamlit as st | |
from sklearn.model_selection import train_test_split | |
from sklearn.feature_extraction.text import CountVectorizer | |
import pandas as pd | |
import numpy as np | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.naive_bayes import MultinomialNB | |
from sklearn.metrics import accuracy_score | |
df = pd.read_csv("spam.csv") | |
st.title(":red[Email Spam or Ham Classification]") | |
x = df["Message"] | |
y = df["Category"] | |
ham = df[df["Category"] == "ham"] | |
bow = CountVectorizer(stop_words = "english") | |
final_X = pd.DataFrame(bow.fit_transform(x).toarray(), columns = bow.get_feature_names_out()) | |
X_train, X_test, y_train, y_test = train_test_split(final_X, y , test_size= 0.25, random_state = 23) | |
nav_base = MultinomialNB() | |
nav_base.fit(X_train, y_train) | |
y_pred = nav_base.predict(X_test) | |
res = st.button("predict_score") | |
if res: | |
st.write(accuracy_score(y_test,y_pred)) | |
st.snow() | |
input = st.text_input("enter email") | |
def fun(email): | |
data = bow.transform([email]).toarray() | |
st.write(nav_base.predict(data)[0]) | |
if st.button("predict"): | |
fun(input) | |
st.balloons() |