Spaces:
Running
Running
# Imports | |
import gradio as gr | |
import spaces | |
import torch | |
import os | |
import math | |
import gc | |
import librosa | |
import tempfile | |
from PIL import Image, ImageSequence | |
from decord import VideoReader, cpu | |
from moviepy.editor import VideoFileClip | |
from transformers import AutoModel, AutoTokenizer, AutoProcessor | |
# Variables | |
DEVICE = "auto" | |
if DEVICE == "auto": | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
DEFAULT_INPUT = "Describe in one short sentence." | |
MAX_FRAMES = 64 | |
AUDIO_SR = 16000 | |
model_name = "openbmb/MiniCPM-o-2_6" | |
repo = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="sdpa", torch_dtype=torch.bfloat16).to(DEVICE) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) | |
css = ''' | |
.gradio-container{max-width: 560px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
global_instruction = "You will analyze video, audio and text input and output your description of the given content with as much keywords and always take a guess." | |
input_prefixes = { | |
"Image": "A image file called β has been attached, describe the image content.", | |
"GIF": "A GIF file called β has been attached, describe the GIF content.", | |
"Video": "A audio video file called β has been attached, describe the video content and the audio content.", | |
"Audio": "A audio file called β has been attached, describe the audio content.", | |
} | |
filetypes = { | |
"Image": [".jpg", ".jpeg", ".png", ".bmp"], | |
"GIF": [".gif"], | |
"Video": [".mp4", ".mov", ".avi", ".mkv"], | |
"Audio": [".wav", ".mp3", ".flac", ".aac"], | |
} | |
# Functions | |
def infer_filetype(ext): | |
return next((k for k, v in filetypes.items() if ext in v), None) | |
def uniform_sample(seq, n): | |
step = max(len(seq) // n, 1) | |
return seq[::step][:n] | |
def frames_from_video(path): | |
vr = VideoReader(path, ctx = cpu(0)) | |
idx = uniform_sample(range(len(vr)), MAX_FRAMES) | |
batch = vr.get_batch(idx).asnumpy() | |
return [Image.fromarray(frame.astype("uint8")) for frame in batch] | |
def audio_from_video(path): | |
clip = VideoFileClip(path) | |
with tempfile.NamedTemporaryFile(suffix = ".wav", delete = True) as tmp: | |
clip.audio.write_audiofile(tmp.name, | |
codec = "pcm_s16le", | |
fps = AUDIO_SR, | |
verbose = False, | |
logger = None) | |
audio_np, _ = librosa.load(tmp.name, sr = AUDIO_SR, mono = True) | |
clip.close() | |
return audio_np | |
def load_audio(path): | |
audio_np, _ = librosa.load(path, sr = AUDIO_SR, mono = True) | |
return audio_np | |
def build_video_omni(path, instruction): | |
frames = frames_from_video(path) | |
audio = audio_from_video(path) | |
contents = [instruction] | |
audio_secs = math.ceil(len(audio) / AUDIO_SR) | |
total_units = max(1, min(len(frames), audio_secs)) | |
for i in range(total_units): | |
frame = frames[i] if i < len(frames) else frames[-1] | |
start = i * AUDIO_SR | |
end = min((i + 1) * AUDIO_SR, len(audio)) | |
chunk = audio[start:end] | |
if chunk.size == 0: break | |
contents.extend(["<unit>", frame, chunk]) | |
return contents | |
def build_image_omni(path, instruction): | |
image = Image.open(path).convert("RGB") | |
return [instruction, image] | |
def build_gif_omni(path, instruction): | |
img = Image.open(path) | |
frames = [f.copy().convert("RGB") for f in ImageSequence.Iterator(img)] | |
frames = uniform_sample(frames, MAX_FRAMES) | |
return [instruction, *frames] | |
def build_audio_omni(path, instruction): | |
audio = load_audio(path) | |
return [instruction, audio] | |
def generate(input, | |
instruction = DEFAULT_INPUT, | |
sampling = False, | |
temperature = 0.7, | |
top_p = 0.8, | |
top_k = 100, | |
repetition_penalty = 1.05, | |
max_tokens = 512): | |
if not input: return "no input provided." | |
extension = os.path.splitext(input)[1].lower() | |
filetype = infer_filetype(extension) | |
if not filetype: return "unsupported file type." | |
filename = os.path.basename(input) | |
prefix = input_prefixes[filetype].replace("β", filename) | |
builder_map = { | |
"Image": build_image_omni, | |
"GIF" : build_gif_omni, | |
"Video": build_video_omni, | |
"Audio": build_audio_omni | |
} | |
instruction = f"{prefix}\n{instruction}" | |
msgs = [{ "role": "user", "content": global_instruction }, { "role": "user", "content": omni_content }] | |
print(msgs) | |
output = repo.chat( | |
msgs = msgs, | |
tokenizer = tokenizer, | |
sampling = sampling, | |
temperature = temperature, | |
top_p = top_p, | |
top_k = top_k, | |
repetition_penalty = repetition_penalty, | |
max_new_tokens = max_tokens, | |
omni_input = True, | |
use_image_id = False, | |
max_slice_nums = 2 | |
) | |
torch.cuda.empty_cache() | |
gc.collect() | |
return output | |
def cloud(): | |
print("[CLOUD] | Space maintained.") | |
# Initialize | |
with gr.Blocks(css=css) as main: | |
with gr.Column(): | |
input = gr.File(label="Input", file_types=["image", "video", "audio"], type="filepath") | |
instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction") | |
sampling = gr.Checkbox(value=False, label="Sampling") | |
temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature") | |
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") | |
top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") | |
repetition_penalty = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=1.05, label="Repetition Penalty") | |
max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") | |
submit = gr.Button("βΆ") | |
maintain = gr.Button("βοΈ") | |
with gr.Column(): | |
output = gr.Textbox(lines=1, value="", label="Output") | |
submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False) | |
maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
main.launch(show_api=True) |