Spaces:
Running
Running
File size: 1,760 Bytes
a3c1698 4946e6a 08e100b 875479b 08e100b 0bc0be3 08e100b 0bc0be3 4bdff08 08e100b 875479b 4946e6a 8b2a016 a53e625 e21be95 6d31a11 e21be95 875479b 0bc0be3 45377c6 0bc0be3 4ae584a 0bc0be3 a53e625 548b077 0bc0be3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# Imports
import gradio as gr
import spaces
import torch
from transformers import pipeline
from faster_whisper import WhisperModel
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
# Variables
DEFAULT_TASK = "transcribe"
BATCH_SIZE = 8
# repo = pipeline(task="automatic-speech-recognition", model="deepdml/faster-whisper-large-v3-turbo-ct2", chunk_length_s=30, device=DEVICE)
repo = WhisperModel("faster-whisper-large-v3-turbo-ct2")
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
@spaces.GPU(duration=15)
def transcribe(input=None, task=DEFAULT_TASK):
print(input)
if input is None: raise gr.Error("Invalid input.")
segments, info = model.transcribe(input)
print(segments)
print(info)
# output = repo(input, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return segments
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Transcribe audio to text.")
with gr.Column():
input = gr.Audio(sources="upload", type="filepath", label="Input")
task = gr.Radio(["transcribe", "translate"], label="Task", value=DEFAULT_TASK)
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Textbox(lines=1, value="", label="Output")
submit.click(transcribe, inputs=[input, task], outputs=[output], queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True) |