Spaces:
Running
Running
File size: 1,944 Bytes
a3c1698 4946e6a 08e100b 875479b 2d1af3e 08e100b 0bc0be3 08e100b 0bc0be3 4bdff08 08e100b 875479b 2d1af3e 875479b 4946e6a 8b2a016 a53e625 e21be95 6d31a11 e21be95 875479b 0bc0be3 45377c6 0bc0be3 4ae584a 0bc0be3 a53e625 548b077 0bc0be3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# Imports
import gradio as gr
import spaces
import torch
from transformers import pipeline
from faster_whisper import WhisperModel
from huggingface_hub import snapshot_download
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
# Variables
DEFAULT_TASK = "transcribe"
BATCH_SIZE = 8
# repo = pipeline(task="automatic-speech-recognition", model="deepdml/faster-whisper-large-v3-turbo-ct2", chunk_length_s=30, device=DEVICE)
snapshot_download(repo_id="deepdml/faster-whisper-large-v3-turbo-ct2", local_dir="faster-whisper-large-v3-turbo-ct2", repo_type="model")
repo = WhisperModel("faster-whisper-large-v3-turbo-ct2")
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
@spaces.GPU(duration=15)
def transcribe(input=None, task=DEFAULT_TASK):
print(input)
if input is None: raise gr.Error("Invalid input.")
segments, info = model.transcribe(input)
print(segments)
print(info)
# output = repo(input, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return segments
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Transcribe audio to text.")
with gr.Column():
input = gr.Audio(sources="upload", type="filepath", label="Input")
task = gr.Radio(["transcribe", "translate"], label="Task", value=DEFAULT_TASK)
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Textbox(lines=1, value="", label="Output")
submit.click(transcribe, inputs=[input, task], outputs=[output], queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True) |