Spaces:
Paused
Paused
File size: 1,470 Bytes
a3c1698 4946e6a 08e100b ecbd09c 08e100b a3c1698 08e100b 4946e6a 08e100b ecbd09c 08e100b 4946e6a 08e100b 4946e6a 08e100b a3c1698 ecbd09c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# Imports
import gradio as gr
import spaces
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device,)
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
demo = gr.Blocks(theme=gr.themes.Ocean())
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([file_transcribe], ["Audio file"])
demo.queue().launch(ssr_mode=False) |