File size: 1,470 Bytes
a3c1698
 
4946e6a
08e100b
 
 
 
 
 
 
 
ecbd09c
08e100b
 
 
 
a3c1698
08e100b
4946e6a
08e100b
 
 
 
 
 
 
 
 
ecbd09c
08e100b
 
 
 
 
4946e6a
08e100b
 
 
 
 
4946e6a
08e100b
 
 
 
 
 
 
a3c1698
ecbd09c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Imports
import gradio as gr
import spaces
import torch

from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os

MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device,)


@spaces.GPU
def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return  text


demo = gr.Blocks(theme=gr.themes.Ocean())


file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="Whisper Large V3: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([file_transcribe], ["Audio file"])

demo.queue().launch(ssr_mode=False)