Spaces:
Paused
Paused
File size: 5,500 Bytes
39d0c1a 4b77634 a00a4e7 767aa72 3d58a26 39d0c1a 3d58a26 71ed3fb 39d0c1a e2288b2 3d58a26 e2288b2 39d0c1a e2288b2 4b77634 e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 71ed3fb e2288b2 39d0c1a e2288b2 71ed3fb 39d0c1a e2288b2 39d0c1a 71ed3fb 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a 71ed3fb 39d0c1a e2288b2 39d0c1a e2288b2 3d58a26 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 39d0c1a e2288b2 71ed3fb 39d0c1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os, torch, torchaudio, gradio as gr
import spaces
from zonos.model import Zonos
from zonos.conditioning import make_cond_dict, supported_language_codes
os.environ["TORCH_COMPILE_DISABLE"] = "1"
os.environ["TORCHINDUCTOR_DISABLE"] = "1"
os.environ["TORCHDYNAMO_DISABLE"] = "1"
os.environ["TORCHDYNAMO_SUPPRESS_ERRORS"] = "True"
torch._dynamo.disable()
torch.compile = lambda f, *_, **__: f
device = "cuda"
MODEL_NAME = "Zyphra/Zonos-v0.1-transformer"
MODEL = Zonos.from_pretrained(MODEL_NAME, device=device).requires_grad_(False).eval()
def _patch_cuda_props():
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
p = torch.cuda.get_device_properties(i)
if not hasattr(p, "regs_per_multiprocessor"):
setattr(p, "regs_per_multiprocessor", 65536)
if not hasattr(p, "max_threads_per_multi_processor"):
setattr(p, "max_threads_per_multi_processor", 2048)
_patch_cuda_props()
@spaces.GPU
def generate_audio(
text,
language,
speaker_audio,
e1,
e2,
e3,
e4,
e5,
e6,
e7,
e8,
clarity,
fmax,
pitch_std,
speaking_rate,
dnsmos_ovrl,
cfg_scale,
min_p,
steps,
seed,
randomize_seed,
progress=gr.Progress(),
):
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
torch.manual_seed(int(seed))
speaker_embedding = None
if speaker_audio is not None:
wav, sr = torchaudio.load(speaker_audio)
speaker_embedding = (
MODEL.make_speaker_embedding(wav, sr).to(device, dtype=torch.bfloat16)
)
emotion_tensor = torch.tensor(
[e1, e2, e3, e4, e5, e6, e7, e8], device=device, dtype=torch.float32
)
vq_tensor = torch.tensor([clarity] * 8, device=device, dtype=torch.float32).unsqueeze(
0
)
cond_dict = make_cond_dict(
text=text,
language=language,
speaker=speaker_embedding,
emotion=emotion_tensor,
vqscore_8=vq_tensor,
fmax=float(fmax),
pitch_std=float(pitch_std),
speaking_rate=float(speaking_rate),
dnsmos_ovrl=float(dnsmos_ovrl),
device=device,
)
conditioning = MODEL.prepare_conditioning(cond_dict)
estimated_total_steps = int(steps)
def cb(_, step, __):
progress((step, estimated_total_steps))
return True
codes = MODEL.generate(
prefix_conditioning=conditioning,
max_new_tokens=int(steps),
cfg_scale=float(cfg_scale),
batch_size=1,
sampling_params=dict(min_p=float(min_p)),
callback=cb,
)
wav_out = MODEL.autoencoder.decode(codes).cpu().detach()
sr_out = MODEL.autoencoder.sampling_rate
if wav_out.dim() == 2 and wav_out.size(0) > 1:
wav_out = wav_out[0:1, :]
return (sr_out, wav_out.squeeze().numpy()), seed
def build_interface():
with gr.Blocks() as demo:
gr.Markdown("# ✨ zonos tts generator ✨")
text = gr.Textbox(label="text", value="hello, world!", lines=4, max_length=500)
language = gr.Dropdown(
choices=supported_language_codes, value="en-us", label="language"
)
speaker_audio = gr.Audio(label="voice reference", type="filepath")
clarity_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="clarity")
steps_slider = gr.Slider(1, 3000, 300, 1, label="steps")
dnsmos_slider = gr.Slider(1.0, 5.0, 4.0, 0.1, label="quality")
fmax_slider = gr.Slider(0, 24000, 24000, 1, label="fmax")
pitch_std_slider = gr.Slider(0.0, 300.0, 45.0, 1, label="pitch std")
speaking_rate_slider = gr.Slider(5.0, 30.0, 15.0, 0.5, label="rate")
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="guidance")
min_p_slider = gr.Slider(0.0, 1.0, 0.15, 0.01, label="min p")
with gr.Row():
e1 = gr.Slider(0.0, 1.0, 0.0, 0.05, label="happy")
e2 = gr.Slider(0.0, 1.0, 0.0, 0.05, label="sad")
e3 = gr.Slider(0.0, 1.0, 0.0, 0.05, label="disgust")
e4 = gr.Slider(0.0, 1.0, 0.0, 0.05, label="fear")
with gr.Row():
e5 = gr.Slider(0.0, 1.0, 0.0, 0.05, label="surprise")
e6 = gr.Slider(0.0, 1.0, 0.0, 0.05, label="anger")
e7 = gr.Slider(0.0, 1.0, 0.0, 0.05, label="other")
e8 = gr.Slider(0.0, 1.0, 0.0, 0.05, label="neutral")
seed_number = gr.Number(label="seed", value=420, precision=0)
randomize_seed_toggle = gr.Checkbox(label="randomize seed", value=True)
generate_button = gr.Button("generate")
output_audio = gr.Audio(label="output", type="numpy", autoplay=True)
generate_button.click(
fn=generate_audio,
inputs=[
text,
language,
speaker_audio,
e1,
e2,
e3,
e4,
e5,
e6,
e7,
e8,
clarity_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
cfg_scale_slider,
min_p_slider,
steps_slider,
seed_number,
randomize_seed_toggle,
],
outputs=[output_audio, seed_number],
)
return demo
if __name__ == "__main__":
build_interface().launch() |