File size: 17,148 Bytes
e2288b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ed3fb
a00a4e7
 
767aa72
3d58a26
 
 
 
 
 
 
 
 
71ed3fb
e2288b2
 
 
 
 
3d58a26
 
 
 
 
 
 
 
 
 
e2288b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ed3fb
e2288b2
 
 
 
 
 
 
 
 
 
 
71ed3fb
e2288b2
 
 
 
71ed3fb
e2288b2
 
 
 
 
 
 
 
 
 
 
 
71ed3fb
 
e2288b2
 
 
 
 
 
 
 
3d58a26
e2288b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ed3fb
e2288b2
193e78a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import os
import shlex
import subprocess

subprocess.run(
    shlex.split("pip install flash-attn --no-build-isolation"),
    env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    check=True,
)
subprocess.run(
    shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"),
    check=True,
)
subprocess.run(
    shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"),
    check=True,
)

import spaces
import torch
import torchaudio
import gradio as gr
from os import getenv

from zonos.model import Zonos
from zonos.conditioning import make_cond_dict, supported_language_codes

# 1. hard-kill torch.compile / dynamo / inductor so they never run
os.environ["TORCH_COMPILE_DISABLE"] = "1"
os.environ["TORCHINDUCTOR_DISABLE"] = "1"
os.environ["TORCHDYNAMO_DISABLE"] = "1"          # <- the one that actually blocks torch._dynamo  
os.environ["TORCHDYNAMO_SUPPRESS_ERRORS"] = "True"  # fall back to eager if something still slips through  :contentReference[oaicite:1]{index=1}

torch._dynamo.disable()        # guard for older versions
torch.compile = lambda f,*_,**__: f   # no-op wrapper

device = "cuda"
MODEL_NAMES = ["Zyphra/Zonos-v0.1-transformer", "Zyphra/Zonos-v0.1-hybrid"]
MODELS = {name: Zonos.from_pretrained(name, device=device) for name in MODEL_NAMES}
for model in MODELS.values():
    model.requires_grad_(False).eval()

def _patch_cuda_props():
    if torch.cuda.is_available():
        for i in range(torch.cuda.device_count()):
            p = torch.cuda.get_device_properties(i)
            if not hasattr(p, "regs_per_multiprocessor"):
                setattr(p, "regs_per_multiprocessor", 65536)
            if not hasattr(p, "max_threads_per_multi_processor"):
                setattr(p, "max_threads_per_multi_processor", 2048)
                
_patch_cuda_props()

def update_ui(model_choice):
    """
    Dynamically show/hide UI elements based on the model's conditioners.
    We do NOT display 'language_id' or 'ctc_loss' even if they exist in the model.
    """
    model = MODELS[model_choice]
    cond_names = [c.name for c in model.prefix_conditioner.conditioners]
    print("Conditioners in this model:", cond_names)

    text_update = gr.update(visible=("espeak" in cond_names))
    language_update = gr.update(visible=("espeak" in cond_names))
    speaker_audio_update = gr.update(visible=("speaker" in cond_names))
    prefix_audio_update = gr.update(visible=True)
    emotion1_update = gr.update(visible=("emotion" in cond_names))
    emotion2_update = gr.update(visible=("emotion" in cond_names))
    emotion3_update = gr.update(visible=("emotion" in cond_names))
    emotion4_update = gr.update(visible=("emotion" in cond_names))
    emotion5_update = gr.update(visible=("emotion" in cond_names))
    emotion6_update = gr.update(visible=("emotion" in cond_names))
    emotion7_update = gr.update(visible=("emotion" in cond_names))
    emotion8_update = gr.update(visible=("emotion" in cond_names))
    vq_single_slider_update = gr.update(visible=("vqscore_8" in cond_names))
    fmax_slider_update = gr.update(visible=("fmax" in cond_names))
    pitch_std_slider_update = gr.update(visible=("pitch_std" in cond_names))
    speaking_rate_slider_update = gr.update(visible=("speaking_rate" in cond_names))
    dnsmos_slider_update = gr.update(visible=("dnsmos_ovrl" in cond_names))
    speaker_noised_checkbox_update = gr.update(visible=("speaker_noised" in cond_names))
    unconditional_keys_update = gr.update(
        choices=[name for name in cond_names if name not in ("espeak", "language_id")]
    )

    return (
        text_update,
        language_update,
        speaker_audio_update,
        prefix_audio_update,
        emotion1_update,
        emotion2_update,
        emotion3_update,
        emotion4_update,
        emotion5_update,
        emotion6_update,
        emotion7_update,
        emotion8_update,
        vq_single_slider_update,
        fmax_slider_update,
        pitch_std_slider_update,
        speaking_rate_slider_update,
        dnsmos_slider_update,
        speaker_noised_checkbox_update,
        unconditional_keys_update,
    )


@spaces.GPU(duration=120)
def generate_audio(
    model_choice,
    text,
    language,
    speaker_audio,
    prefix_audio,
    e1,
    e2,
    e3,
    e4,
    e5,
    e6,
    e7,
    e8,
    vq_single,
    fmax,
    pitch_std,
    speaking_rate,
    dnsmos_ovrl,
    speaker_noised,
    cfg_scale,
    min_p,
    seed,
    randomize_seed,
    unconditional_keys,
    progress=gr.Progress(),
):
    """
    Generates audio based on the provided UI parameters.
    We do NOT use language_id or ctc_loss even if the model has them.
    """
    selected_model = MODELS[model_choice]

    speaker_noised_bool = bool(speaker_noised)
    fmax = float(fmax)
    pitch_std = float(pitch_std)
    speaking_rate = float(speaking_rate)
    dnsmos_ovrl = float(dnsmos_ovrl)
    cfg_scale = float(cfg_scale)
    min_p = float(min_p)
    seed = int(seed)
    max_new_tokens = 86 * 30

    if randomize_seed:
        seed = torch.randint(0, 2**32 - 1, (1,)).item()
    torch.manual_seed(seed)

    speaker_embedding = None
    if speaker_audio is not None and "speaker" not in unconditional_keys:
        wav, sr = torchaudio.load(speaker_audio)
        speaker_embedding = selected_model.make_speaker_embedding(wav, sr)
        speaker_embedding = speaker_embedding.to(device, dtype=torch.bfloat16)

    audio_prefix_codes = None
    if prefix_audio is not None:
        wav_prefix, sr_prefix = torchaudio.load(prefix_audio)
        wav_prefix = wav_prefix.mean(0, keepdim=True)
        wav_prefix = torchaudio.functional.resample(wav_prefix, sr_prefix, selected_model.autoencoder.sampling_rate)
        wav_prefix = wav_prefix.to(device, dtype=torch.float32)
        with torch.autocast(device, dtype=torch.float32):
            audio_prefix_codes = selected_model.autoencoder.encode(wav_prefix.unsqueeze(0))

    emotion_tensor = torch.tensor(list(map(float, [e1, e2, e3, e4, e5, e6, e7, e8])), device=device)

    vq_val = float(vq_single)
    vq_tensor = torch.tensor([vq_val] * 8, device=device).unsqueeze(0)

    cond_dict = make_cond_dict(
        text=text,
        language=language,
        speaker=speaker_embedding,
        emotion=emotion_tensor,
        vqscore_8=vq_tensor,
        fmax=fmax,
        pitch_std=pitch_std,
        speaking_rate=speaking_rate,
        dnsmos_ovrl=dnsmos_ovrl,
        speaker_noised=speaker_noised_bool,
        device=device,
        unconditional_keys=unconditional_keys,
    )
    conditioning = selected_model.prepare_conditioning(cond_dict)

    estimated_generation_duration = 30 * len(text) / 400
    estimated_total_steps = int(estimated_generation_duration * 86)

    def update_progress(_frame: torch.Tensor, step: int, _total_steps: int) -> bool:
        progress((step, estimated_total_steps))
        return True

    codes = selected_model.generate(
        prefix_conditioning=conditioning,
        audio_prefix_codes=audio_prefix_codes,
        max_new_tokens=max_new_tokens,
        cfg_scale=cfg_scale,
        batch_size=1,
        sampling_params=dict(min_p=min_p),
        callback=update_progress,
    )

    wav_out = selected_model.autoencoder.decode(codes).cpu().detach()
    sr_out = selected_model.autoencoder.sampling_rate
    if wav_out.dim() == 2 and wav_out.size(0) > 1:
        wav_out = wav_out[0:1, :]
    return (sr_out, wav_out.squeeze().numpy()), seed

def build_interface():
    # Build interface with enhanced visual elements and layout
    with gr.Blocks() as demo:
        # Header section
        with gr.Column(elem_classes="app-header"):
            gr.Markdown("# ✨ Zonos Text-to-Speech Generator ✨")
            gr.Markdown("Create natural-sounding speech with customizable voice characteristics")
        
        # Main content container 
        with gr.Column(elem_classes="container"):
            # First panel - Text & Model Selection
            with gr.Column(elem_classes="panel"):
                gr.Markdown('<div class="title">💬 Text & Model Configuration</div>')
                with gr.Row():
                    with gr.Column(scale=2):
                        model_choice = gr.Dropdown(
                            choices=MODEL_NAMES,
                            value="Zyphra/Zonos-v0.1-transformer",
                            label="Zonos Model Type",
                            info="Select the model variant to use.",
                        )
                        text = gr.Textbox(
                            label="Text to Synthesize",
                            value="Zonos uses eSpeak for text to phoneme conversion!",
                            lines=4,
                            max_length=500,
                        )
                        language = gr.Dropdown(
                            choices=supported_language_codes,
                            value="en-us",
                            label="Language Code",
                            info="Select a language code.",
                        )
                    with gr.Column(scale=1):
                        prefix_audio = gr.Audio(
                            value="assets/silence_100ms.wav",
                            label="Optional Prefix Audio (continue from this audio)",
                            type="filepath",
                        )
            
            # Second panel - Voice Characteristics
            with gr.Column(elem_classes="panel"):
                gr.Markdown('<div class="title">🎤 Voice Characteristics</div>')
                with gr.Row():
                    with gr.Column(scale=1):
                        speaker_audio = gr.Audio(
                            label="Optional Speaker Audio (for voice cloning)",
                            type="filepath",
                        )
                        speaker_noised_checkbox = gr.Checkbox(label="Denoise Speaker?", value=False)
                    
                    with gr.Column(scale=2):
                        with gr.Row():
                            with gr.Column():
                                dnsmos_slider = gr.Slider(1.0, 5.0, value=4.0, step=0.1, label="Voice Quality", elem_classes="slider-container")
                                fmax_slider = gr.Slider(0, 24000, value=24000, step=1, label="Frequency Max (Hz)", elem_classes="slider-container")
                                vq_single_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="Voice Clarity", elem_classes="slider-container")
                            with gr.Column():
                                pitch_std_slider = gr.Slider(0.0, 300.0, value=45.0, step=1, label="Pitch Variation", elem_classes="slider-container")
                                speaking_rate_slider = gr.Slider(5.0, 30.0, value=15.0, step=0.5, label="Speaking Rate", elem_classes="slider-container")
            
            # Third panel - Generation Parameters
            with gr.Column(elem_classes="panel"):
                gr.Markdown('<div class="title">⚙️ Generation Parameters</div>')
                with gr.Row():
                    with gr.Column():
                        cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="Guidance Scale", elem_classes="slider-container")
                        min_p_slider = gr.Slider(0.0, 1.0, 0.15, 0.01, label="Min P (Randomness)", elem_classes="slider-container")
                    with gr.Column():
                        seed_number = gr.Number(label="Seed", value=420, precision=0)
                        randomize_seed_toggle = gr.Checkbox(label="Randomize Seed (before generation)", value=True)
            
            # Emotion Panel with Tabbed Interface
            with gr.Accordion("🎭 Emotion Settings", open=False, elem_classes="panel"):
                gr.Markdown(
                    "Adjust these sliders to control the emotional tone of the generated speech.\n"
                    "For a neutral voice, keep 'Neutral' high and other emotions low."
                )
                with gr.Row(elem_classes="emotion-grid"):
                    emotion1 = gr.Slider(0.0, 1.0, 1.0, 0.05, label="Happiness", elem_classes="slider-container")
                    emotion2 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Sadness", elem_classes="slider-container")
                    emotion3 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Disgust", elem_classes="slider-container")
                    emotion4 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Fear", elem_classes="slider-container")
                with gr.Row(elem_classes="emotion-grid"):
                    emotion5 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Surprise", elem_classes="slider-container")
                    emotion6 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Anger", elem_classes="slider-container")
                    emotion7 = gr.Slider(0.0, 1.0, 0.1, 0.05, label="Other", elem_classes="slider-container")
                    emotion8 = gr.Slider(0.0, 1.0, 0.2, 0.05, label="Neutral", elem_classes="slider-container")
            
            # Advanced Settings Panel
            with gr.Accordion("⚡ Advanced Settings", open=False, elem_classes="panel"):
                gr.Markdown(
                    "### Unconditional Toggles\n"
                    "Checking a box will make the model ignore the corresponding conditioning value and make it unconditional.\n"
                    'Practically this means the given conditioning feature will be unconstrained and "filled in automatically".'
                )
                unconditional_keys = gr.CheckboxGroup(
                    [
                        "speaker",
                        "emotion",
                        "vqscore_8",
                        "fmax",
                        "pitch_std",
                        "speaking_rate",
                        "dnsmos_ovrl",
                        "speaker_noised",
                    ],
                    value=["emotion"],
                    label="Unconditional Keys",
                )
            
            # Generate Button and Output Area
            with gr.Column(elem_classes="panel output-container"):
                gr.Markdown('<div class="title">🔊 Generate & Output</div>')
                generate_button = gr.Button("Generate Audio", elem_classes="generate-button")
                output_audio = gr.Audio(label="Generated Audio", type="numpy", autoplay=True, elem_classes="audio-output")

        model_choice.change(
            fn=update_ui,
            inputs=[model_choice],
            outputs=[
                text,
                language,
                speaker_audio,
                prefix_audio,
                emotion1,
                emotion2,
                emotion3,
                emotion4,
                emotion5,
                emotion6,
                emotion7,
                emotion8,
                vq_single_slider,
                fmax_slider,
                pitch_std_slider,
                speaking_rate_slider,
                dnsmos_slider,
                speaker_noised_checkbox,
                unconditional_keys,
            ],
        )

        # On page load, trigger the same UI refresh
        demo.load(
            fn=update_ui,
            inputs=[model_choice],
            outputs=[
                text,
                language,
                speaker_audio,
                prefix_audio,
                emotion1,
                emotion2,
                emotion3,
                emotion4,
                emotion5,
                emotion6,
                emotion7,
                emotion8,
                vq_single_slider,
                fmax_slider,
                pitch_std_slider,
                speaking_rate_slider,
                dnsmos_slider,
                speaker_noised_checkbox,
                unconditional_keys,
            ],
        )

        # Generate audio on button click
        generate_button.click(
            fn=generate_audio,
            inputs=[
                model_choice,
                text,
                language,
                speaker_audio,
                prefix_audio,
                emotion1,
                emotion2,
                emotion3,
                emotion4,
                emotion5,
                emotion6,
                emotion7,
                emotion8,
                vq_single_slider,
                fmax_slider,
                pitch_std_slider,
                speaking_rate_slider,
                dnsmos_slider,
                speaker_noised_checkbox,
                cfg_scale_slider,
                min_p_slider,
                seed_number,
                randomize_seed_toggle,
                unconditional_keys,
            ],
            outputs=[output_audio, seed_number],
        )

    return demo


if __name__ == "__main__":
    demo = build_interface()
    demo.launch()