PSHuman / app.py
Stylique's picture
Update app.py
ff907d0 verified
import torch
import os
import shutil
import tempfile
import gradio as gr
from PIL import Image
from rembg import remove
import sys
import uuid
import subprocess
from glob import glob
import requests
from huggingface_hub import snapshot_download
import io
from fastapi import UploadFile, File, HTTPException
from fastapi.responses import FileResponse
# Download models
os.makedirs("ckpts", exist_ok=True)
snapshot_download(
repo_id = "pengHTYX/PSHuman_Unclip_768_6views",
local_dir = "./ckpts"
)
os.makedirs("smpl_related", exist_ok=True)
snapshot_download(
repo_id = "fffiloni/PSHuman-SMPL-related",
local_dir = "./smpl_related"
)
# Folder containing example images
examples_folder = "examples"
# Retrieve all file paths in the folder
images_examples = [
os.path.join(examples_folder, file)
for file in os.listdir(examples_folder)
if os.path.isfile(os.path.join(examples_folder, file))
]
def remove_background(input_pil, remove_bg):
temp_dir = tempfile.mkdtemp()
unique_id = str(uuid.uuid4())
image_path = os.path.join(temp_dir, f'input_image_{unique_id}.png')
try:
if isinstance(input_pil, Image.Image):
image = input_pil
else:
image = Image.open(input_pil)
image = image.transpose(Image.FLIP_LEFT_RIGHT)
image.save(image_path)
except Exception as e:
shutil.rmtree(temp_dir)
raise gr.Error(f"Error downloading or saving the image: {str(e)}")
if remove_bg is True:
removed_bg_path = os.path.join(temp_dir, f'output_image_rmbg_{unique_id}.png')
try:
img = Image.open(image_path)
result = remove(img)
result.save(removed_bg_path)
os.remove(image_path)
except Exception as e:
shutil.rmtree(temp_dir)
raise gr.Error(f"Error removing background: {str(e)}")
return removed_bg_path, temp_dir
else:
return image_path, temp_dir
def run_inference(temp_dir, removed_bg_path):
inference_config = "configs/inference-768-6view.yaml"
pretrained_model = "./ckpts"
crop_size = 740
seed = 600
num_views = 7
save_mode = "rgb"
try:
subprocess.run(
[
"python", "inference.py",
"--config", inference_config,
f"pretrained_model_name_or_path={pretrained_model}",
f"validation_dataset.crop_size={crop_size}",
f"with_smpl=false",
f"validation_dataset.root_dir={temp_dir}",
f"seed={seed}",
f"num_views={num_views}",
f"save_mode={save_mode}"
],
check=True
)
removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0]
out_folder_path = "out"
out_folder_objects = os.listdir(out_folder_path)
print(f"Objects in '{out_folder_path}':")
for obj in out_folder_objects:
print(f" - {obj}")
specific_out_folder_path = os.path.join(out_folder_path, removed_bg_file_name)
if os.path.exists(specific_out_folder_path) and os.path.isdir(specific_out_folder_path):
specific_out_folder_objects = os.listdir(specific_out_folder_path)
print(f"\nObjects in '{specific_out_folder_path}':")
for obj in specific_out_folder_objects:
print(f" - {obj}")
else:
print(f"\nThe folder '{specific_out_folder_path}' does not exist.")
output_video = glob(os.path.join(f"out/{removed_bg_file_name}", "*.mp4"))
output_objects = glob(os.path.join(f"out/{removed_bg_file_name}", "*.obj"))
return output_video, output_objects
except subprocess.CalledProcessError as e:
return f"Error during inference: {str(e)}"
def process_image(input_pil, remove_bg, progress=gr.Progress(track_tqdm=True)):
torch.cuda.empty_cache()
result = remove_background(input_pil, remove_bg)
if isinstance(result, str) and result.startswith("Error"):
raise gr.Error(f"{result}")
removed_bg_path, temp_dir = result
output_video, output_objects = run_inference(temp_dir, removed_bg_path)
if isinstance(output_video, str) and output_video.startswith("Error"):
shutil.rmtree(temp_dir)
raise gr.Error(f"{output_video}")
shutil.rmtree(temp_dir)
torch.cuda.empty_cache()
return output_video[0], output_objects[0], output_objects[1]
css="""
div#col-container{
margin: 0 auto;
max-width: 982px;
}
div#video-out-elm{
height: 323px;
}
"""
def gradio_interface():
with gr.Blocks(css=css) as app:
with gr.Column(elem_id="col-container"):
gr.Markdown("# PSHuman: Photorealistic Single-image 3D Human Reconstruction using Cross-Scale Multiview Diffusion and Explicit Remeshing")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/pengHTYX/PSHuman">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://penghtyx.github.io/PSHuman/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/pdf/2409.10141">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/PSHuman?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Group():
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(label="Image input", type="pil", image_mode="RGBA", height=480)
remove_bg = gr.Checkbox(label="Need to remove BG ?", value=False)
submit_button = gr.Button("Process")
with gr.Column(scale=4):
output_video= gr.Video(label="Output Video", elem_id="video-out-elm")
with gr.Row():
output_object_mesh = gr.Model3D(label=".OBJ Mesh", height=240)
output_object_color = gr.Model3D(label=".OBJ colored", height=240)
gr.Examples(
examples = examples_folder,
inputs = [input_image],
examples_per_page = 11
)
submit_button.click(process_image, inputs=[input_image, remove_bg], outputs=[output_video, output_object_mesh, output_object_color])
return app
if __name__ == "__main__":
gradio_app = gradio_interface()
fastapi_app = gradio_app.app
@fastapi_app.post("/api/3d-reconstruct")
async def reconstruct(
image_file: UploadFile = File(...),
remove_bg: bool = False
):
try:
contents = await image_file.read()
pil_image = Image.open(io.BytesIO(contents)).convert("RGBA")
video_path, mesh_path, colored_path = process_image(pil_image, remove_bg)
return FileResponse(
colored_path,
media_type="application/octet-stream",
filename=os.path.basename(colored_path)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
gradio_app.launch(show_api=False, show_error=True, ssr_mode=False)