Sulai2005's picture
Initial commit
506a2b4
# Copyright (c) 2025 Resemble AI
# Author: Manmay Nakhashi
# MIT License
import math
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange
class RelativePositionBias(nn.Module):
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
def forward(self, qk_dots):
i, j, device = *qk_dots.shape[-2:], qk_dots.device
q_pos = torch.arange(i, dtype=torch.long, device=device)
k_pos = torch.arange(j, dtype=torch.long, device=device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets,
max_distance=self.max_distance)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> () h i j')
return qk_dots + (bias * self.scale)
class AttentionQKV(nn.Module):
def __init__(self, n_heads, head_dim, dropout_rate=0.1, scale=None, flash=False):
super().__init__()
self.n_heads = n_heads
self.head_dim = head_dim
self.scale = scale if scale is not None else head_dim ** -0.5
self.flash = flash
self.dropout_rate = dropout_rate
self.dropout = nn.Dropout(dropout_rate)
self.flash_config = self.setup_flash_config() if flash else None
def setup_flash_config(self):
# Setup flash attention configuration
flash_config = {
'enable_flash': True,
'enable_math': True,
'enable_mem_efficient': True
}
return flash_config
def forward(self, q, k, v, mask=None):
q, k, v = [self.split_heads(tensor) for tensor in [q, k, v]]
if self.flash:
out = self.flash_attention(q, k, v, mask=mask)
else:
out = self.scaled_dot_product_attention(q, k, v, mask=mask)
return self.combine_heads(out)
def scaled_dot_product_attention(self, q, k, v, mask=None):
sim = torch.einsum("bhlt,bhls->bhts", q, k) * self.scale
if mask is not None:
sim = sim.masked_fill(mask == 0, float('-inf'))
attn = torch.softmax(sim, dim=-1)
attn = self.dropout(attn)
return torch.einsum("bhts,bhls->bhlt", attn, v)
def flash_attention(self, q, k, v, mask=None):
config = self.flash_config if self.flash_config else {}
with torch.backends.cuda.sdp_kernel(**config):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask=mask,
dropout_p=self.dropout_rate if self.training else 0.
)
return out
def split_heads(self, x):
bs, length, _ = x.shape
x = x.view(bs, length, self.n_heads, self.head_dim)
return x.permute(0, 2, 1, 3)
def combine_heads(self, x):
bs, _, length, _ = x.shape
x = x.permute(0, 2, 1, 3).contiguous()
return x.view(bs, length, -1)
class AttentionBlock2(nn.Module):
"""
An attention block that allows spatial positions to attend to each other,
using AttentionQKV and separate linear transformations for Q, K, and V.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
relative_pos_embeddings=False,
flash_attention=True,
dropout_rate=0.2,
scale=None
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.norm = nn.LayerNorm(channels)
# Separate linear layers for Q, K, and V
self.to_q = nn.Linear(channels, channels)
self.to_k = nn.Linear(channels, channels)
self.to_v = nn.Linear(channels, channels)
self.attention = AttentionQKV(self.num_heads, channels // self.num_heads, dropout_rate=dropout_rate, flash=flash_attention, scale=scale)
self.proj_out = nn.Linear(channels, channels)
if relative_pos_embeddings:
self.relative_pos_embeddings = RelativePositionBias(scale=(channels // self.num_heads) ** .5, causal=False, heads=num_heads, num_buckets=32, max_distance=64)
else:
self.relative_pos_embeddings = None
def forward(self, x1, x2, mask=None):
b1, c1, *spatial1 = x1.shape
b2, c2, *spatial2 = x2.shape
x1_norm = self.norm(x1)
x2_norm = self.norm(x2)
q = self.to_q(x1_norm)
k = self.to_k(x2_norm)
v = self.to_v(x2_norm)
h = self.attention(q, k, v, mask=mask)
h = self.proj_out(h)
return (x1 + h).reshape(b1, c1, *spatial1)
class Perceiver(nn.Module):
"""Inspired by https://arxiv.org/abs/2103.03206"""
def __init__(self, pre_attention_query_token=32, pre_attention_query_size=1024, embedding_dim=1024, num_attn_heads=4):
"""
Initialize the perceiver module.
:param pre_attention_query_token: Number of query tokens for pre-attention
:param pre_attention_query_size: Size of each query token
:param embedding_dim: Dimension of the embedding space
:param num_attn_heads: Number of attention heads
"""
super().__init__()
# Initialize the pre-attention query parameter
self.pre_attention_query = torch.nn.Parameter(
torch.empty(1, pre_attention_query_token, pre_attention_query_size)
)
# Calculate the variance for uniform initialization
query_variance = math.sqrt(3.0) * math.sqrt(2.0 / (pre_attention_query_token + pre_attention_query_token))
# Initialize the pre-attention query with uniform distribution
self.pre_attention_query.data.uniform_(-query_variance, query_variance)
# Initialize the attention block
self.attn = AttentionBlock2(embedding_dim, num_attn_heads)
def forward(self, h):
"""
Forward pass of the perceiver module.
:param h: Input tensor
:return: Output after applying attention mechanisms
"""
# Expand the pre-attention query to match the batch size of the input
query_ = self.pre_attention_query.expand(h.shape[0], -1, -1)
# Apply the first attention mechanism (cross-attention)
pre_att = self.attn(query_, h)
# Apply the second attention mechanism (self-attention)
attn = self.attn(pre_att, pre_att)
return attn