Spaces:
Sleeping
Sleeping
# Copyright (c) 2025 Resemble AI | |
# Author: Manmay Nakhashi | |
# MIT License | |
import math | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
class RelativePositionBias(nn.Module): | |
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8): | |
super().__init__() | |
self.scale = scale | |
self.causal = causal | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128): | |
ret = 0 | |
n = -relative_position | |
if not causal: | |
num_buckets //= 2 | |
ret += (n < 0).long() * num_buckets | |
n = torch.abs(n) | |
else: | |
n = torch.max(n, torch.zeros_like(n)) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).long() | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def forward(self, qk_dots): | |
i, j, device = *qk_dots.shape[-2:], qk_dots.device | |
q_pos = torch.arange(i, dtype=torch.long, device=device) | |
k_pos = torch.arange(j, dtype=torch.long, device=device) | |
rel_pos = k_pos[None, :] - q_pos[:, None] | |
rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets, | |
max_distance=self.max_distance) | |
values = self.relative_attention_bias(rp_bucket) | |
bias = rearrange(values, 'i j h -> () h i j') | |
return qk_dots + (bias * self.scale) | |
class AttentionQKV(nn.Module): | |
def __init__(self, n_heads, head_dim, dropout_rate=0.1, scale=None, flash=False): | |
super().__init__() | |
self.n_heads = n_heads | |
self.head_dim = head_dim | |
self.scale = scale if scale is not None else head_dim ** -0.5 | |
self.flash = flash | |
self.dropout_rate = dropout_rate | |
self.dropout = nn.Dropout(dropout_rate) | |
self.flash_config = self.setup_flash_config() if flash else None | |
def setup_flash_config(self): | |
# Setup flash attention configuration | |
flash_config = { | |
'enable_flash': True, | |
'enable_math': True, | |
'enable_mem_efficient': True | |
} | |
return flash_config | |
def forward(self, q, k, v, mask=None): | |
q, k, v = [self.split_heads(tensor) for tensor in [q, k, v]] | |
if self.flash: | |
out = self.flash_attention(q, k, v, mask=mask) | |
else: | |
out = self.scaled_dot_product_attention(q, k, v, mask=mask) | |
return self.combine_heads(out) | |
def scaled_dot_product_attention(self, q, k, v, mask=None): | |
sim = torch.einsum("bhlt,bhls->bhts", q, k) * self.scale | |
if mask is not None: | |
sim = sim.masked_fill(mask == 0, float('-inf')) | |
attn = torch.softmax(sim, dim=-1) | |
attn = self.dropout(attn) | |
return torch.einsum("bhts,bhls->bhlt", attn, v) | |
def flash_attention(self, q, k, v, mask=None): | |
config = self.flash_config if self.flash_config else {} | |
with torch.backends.cuda.sdp_kernel(**config): | |
out = F.scaled_dot_product_attention( | |
q, k, v, | |
attn_mask=mask, | |
dropout_p=self.dropout_rate if self.training else 0. | |
) | |
return out | |
def split_heads(self, x): | |
bs, length, _ = x.shape | |
x = x.view(bs, length, self.n_heads, self.head_dim) | |
return x.permute(0, 2, 1, 3) | |
def combine_heads(self, x): | |
bs, _, length, _ = x.shape | |
x = x.permute(0, 2, 1, 3).contiguous() | |
return x.view(bs, length, -1) | |
class AttentionBlock2(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other, | |
using AttentionQKV and separate linear transformations for Q, K, and V. | |
""" | |
def __init__( | |
self, | |
channels, | |
num_heads=1, | |
num_head_channels=-1, | |
relative_pos_embeddings=False, | |
flash_attention=True, | |
dropout_rate=0.2, | |
scale=None | |
): | |
super().__init__() | |
self.channels = channels | |
if num_head_channels == -1: | |
self.num_heads = num_heads | |
else: | |
assert ( | |
channels % num_head_channels == 0 | |
), f"channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
self.num_heads = channels // num_head_channels | |
self.norm = nn.LayerNorm(channels) | |
# Separate linear layers for Q, K, and V | |
self.to_q = nn.Linear(channels, channels) | |
self.to_k = nn.Linear(channels, channels) | |
self.to_v = nn.Linear(channels, channels) | |
self.attention = AttentionQKV(self.num_heads, channels // self.num_heads, dropout_rate=dropout_rate, flash=flash_attention, scale=scale) | |
self.proj_out = nn.Linear(channels, channels) | |
if relative_pos_embeddings: | |
self.relative_pos_embeddings = RelativePositionBias(scale=(channels // self.num_heads) ** .5, causal=False, heads=num_heads, num_buckets=32, max_distance=64) | |
else: | |
self.relative_pos_embeddings = None | |
def forward(self, x1, x2, mask=None): | |
b1, c1, *spatial1 = x1.shape | |
b2, c2, *spatial2 = x2.shape | |
x1_norm = self.norm(x1) | |
x2_norm = self.norm(x2) | |
q = self.to_q(x1_norm) | |
k = self.to_k(x2_norm) | |
v = self.to_v(x2_norm) | |
h = self.attention(q, k, v, mask=mask) | |
h = self.proj_out(h) | |
return (x1 + h).reshape(b1, c1, *spatial1) | |
class Perceiver(nn.Module): | |
"""Inspired by https://arxiv.org/abs/2103.03206""" | |
def __init__(self, pre_attention_query_token=32, pre_attention_query_size=1024, embedding_dim=1024, num_attn_heads=4): | |
""" | |
Initialize the perceiver module. | |
:param pre_attention_query_token: Number of query tokens for pre-attention | |
:param pre_attention_query_size: Size of each query token | |
:param embedding_dim: Dimension of the embedding space | |
:param num_attn_heads: Number of attention heads | |
""" | |
super().__init__() | |
# Initialize the pre-attention query parameter | |
self.pre_attention_query = torch.nn.Parameter( | |
torch.empty(1, pre_attention_query_token, pre_attention_query_size) | |
) | |
# Calculate the variance for uniform initialization | |
query_variance = math.sqrt(3.0) * math.sqrt(2.0 / (pre_attention_query_token + pre_attention_query_token)) | |
# Initialize the pre-attention query with uniform distribution | |
self.pre_attention_query.data.uniform_(-query_variance, query_variance) | |
# Initialize the attention block | |
self.attn = AttentionBlock2(embedding_dim, num_attn_heads) | |
def forward(self, h): | |
""" | |
Forward pass of the perceiver module. | |
:param h: Input tensor | |
:return: Output after applying attention mechanisms | |
""" | |
# Expand the pre-attention query to match the batch size of the input | |
query_ = self.pre_attention_query.expand(h.shape[0], -1, -1) | |
# Apply the first attention mechanism (cross-attention) | |
pre_att = self.attn(query_, h) | |
# Apply the second attention mechanism (self-attention) | |
attn = self.attn(pre_att, pre_att) | |
return attn | |