File size: 13,277 Bytes
f59cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5a8ce
f59cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5a8ce
 
f59cf24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9564b
 
 
 
 
 
 
f59cf24
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# from fastapi import FastAPI, HTTPException
# from fastapi.middleware.cors import CORSMiddleware
# from pydantic import BaseModel
# from model import load_model
# from analyzer import analyze_code
# import logging

# app = FastAPI(
#     title="AI Bug Explainer",
#     description="An AI service that detects and fixes bugs in code",
#     version="1.0.0"
# )

# # CORS setup
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],  # Replace with your frontend URL in prod
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )

# # Logging setup
# logging.basicConfig(level=logging.INFO)

# class AnalyzeRequest(BaseModel):
#     language: str
#     code: str

# @app.post("/analyze")
# async def analyze(req: AnalyzeRequest):
#     logging.info(f"πŸ” Received code for analysis ({req.language})")

#     result = analyze_code(req.language, req.code, tokenizer, model)

#     if result is None:
#         raise HTTPException(status_code=500, detail="Model failed to return any response.")

#     if not isinstance(result, dict):
#         logging.warning("⚠️ Model did not return valid JSON, sending raw output")
#         return {
#             "bugs": [],
#             "corrected_code": "",
#             "raw_output": result
#         }

#     return {
#         "bugs": result.get("bug_analysis", []),
#         "corrected_code": result.get("corrected_code", ""),
#         "raw_output": ""  # So frontend doesn't break
#     }

# # Load model
# print("πŸ”§ Loading model...")
# tokenizer, model = load_model()
# print("βœ… Model loaded!")

# from fastapi import FastAPI, HTTPException
# from fastapi.middleware.cors import CORSMiddleware
# from pydantic import BaseModel
# from model import load_model
# from analyzer import analyze_code
# import logging

# app = FastAPI(
#     title="AI Bug Explainer ML Microservice",
#     description="An AI service that detects and fixes bugs in code",
#     version="1.0.0"
# )

# # CORS setup
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],  # Replace with your frontend URL in prod
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )

# # Logging setup
# logging.basicConfig(level=logging.INFO)

# class AnalyzeRequest(BaseModel):
#     language: str
#     code: str

# # Transform bug analysis to match frontend expectations
# def transform_bug_to_issue(bug):
#     """Transform ML service bug format to frontend issue format"""
#     return {
#         "lineNumber": bug.get("line_number", 0),
#         "type": bug.get("error_message", "Unknown Error"),
#         "message": bug.get("explanation", "No explanation provided"),
#         "suggestion": bug.get("fix_suggestion", "No suggestion provided")
#     }

# # Keep your original endpoint for backward compatibility
# @app.post("/analyze")
# async def analyze(req: AnalyzeRequest):
#     logging.info(f"πŸ” Received code for analysis ({req.language})")

#     result = analyze_code(req.language, req.code, tokenizer, model)

#     if result is None:
#         raise HTTPException(status_code=500, detail="Model failed to return any response.")

#     if not isinstance(result, dict):
#         logging.warning("⚠️ Model did not return valid JSON, sending raw output")
#         return {
#             "bugs": [],
#             "corrected_code": "",
#             "raw_output": result
#         }

#     return {
#         "bugs": result.get("bug_analysis", []),
#         "corrected_code": result.get("corrected_code", ""),
#         "raw_output": ""  # So frontend doesn't break
#     }

# # NEW: Add frontend-compatible endpoint
# @app.post("/analysis/submit")
# async def analyze_for_frontend(req: AnalyzeRequest):
#     logging.info(f"πŸ” Frontend: Received code for analysis ({req.language})")

#     result = analyze_code(req.language, req.code, tokenizer, model)

#     if result is None:
#         raise HTTPException(status_code=500, detail="Model failed to return any response.")

#     # If result is not valid JSON, return raw output as fallback
#     if not isinstance(result, dict):
#         logging.warning("⚠️ Model did not return valid JSON, showing raw output")
#         return {
#             "success": False,
#             "has_json_output": False,
#             "corrected_code": "",
#             "issues": [],
#             "raw_output": str(result)
#         }

#     # Successfully parsed JSON
#     bugs = result.get("bug_analysis", [])
#     issues = [transform_bug_to_issue(bug) for bug in bugs]
#     corrected_code = result.get("corrected_code", "")

#     return {
#         "success": True,
#         "has_json_output": True,
#         "corrected_code": corrected_code,
#         "issues": issues,
#         "raw_output": ""
#     }

# # Add history endpoint (placeholder for now)
# @app.get("/analysis/history")
# async def get_analysis_history():
#     # TODO: Implement database storage for history
#     # For now, return empty array to match frontend expectations
#     return {"data": []}

# # Health check endpoint
# @app.get("/health")
# async def health_check():
#     return {
#         "status": "healthy", 
#         "model_loaded": tokenizer is not None and model is not None
#     }

# # Load model
# print("πŸ”§ Loading model...")
# tokenizer, model = load_model()
# print("βœ… Model loaded!")

# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=8000)

from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from model import load_model_async, get_model, is_model_loaded, get_model_info
from analyzer import analyze_code
import logging
import asyncio
import time
from dotenv import load_dotenv
load_dotenv()

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="AI Bug Explainer ML Microservice",
    description="An AI service that detects and fixes bugs in code",
    version="1.0.0"
)

# CORS setup
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Replace with your frontend URL in prod
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class AnalyzeRequest(BaseModel):
    language: str
    code: str

# Global variables for model loading status
model_load_start_time = None
model_load_task = None

def transform_bug_to_issue(bug):
    """Transform ML service bug format to frontend issue format"""
    return {
        "lineNumber": bug.get("line_number", 0),
        "type": bug.get("error_message", "Unknown Error"),
        "message": bug.get("explanation", "No explanation provided"),
        "suggestion": bug.get("fix_suggestion", "No suggestion provided")
    }

@app.on_event("startup")
async def startup_event():
    """Start model loading in background when server starts"""
    global model_load_start_time, model_load_task
    logger.info("πŸš€ Starting ML microservice...")
    logger.info("πŸ”§ Initiating background model loading...")
    
    model_load_start_time = time.time()
    
    # Start model loading in background
    model_load_task = asyncio.create_task(load_model_async())
    
    logger.info("βœ… Server started! Model is loading in background...")

@app.get("/health")
async def health_check():
    """Enhanced health check with model loading status"""
    global model_load_start_time
    
    model_info = get_model_info()
    loading_time = None
    
    if model_load_start_time:
        loading_time = round(time.time() - model_load_start_time, 2)
    
    return {
        "status": "healthy",
        "model_info": model_info,
        "loading_time_seconds": loading_time,
        "ready_for_inference": model_info["loaded"]
    }

@app.get("/model/status")
async def model_status():
    """Get detailed model loading status"""
    global model_load_start_time
    
    model_info = get_model_info()
    loading_time = None
    
    if model_load_start_time:
        loading_time = round(time.time() - model_load_start_time, 2)
    
    return {
        "model_id": model_info["model_id"],
        "loaded": model_info["loaded"],
        "loading": model_info["loading"],
        "loading_time_seconds": loading_time,
        "ready": model_info["loaded"]
    }

@app.post("/analyze")
async def analyze(req: AnalyzeRequest):
    """Original analyze endpoint with model loading check"""
    logger.info(f"πŸ” Received code for analysis ({req.language})")
    
    # Check if model is loaded
    if not is_model_loaded():
        # Wait for model to load (with timeout)
        try:
            await asyncio.wait_for(model_load_task, timeout=300)  # 5 minute timeout
        except asyncio.TimeoutError:
            raise HTTPException(
                status_code=503, 
                detail="Model is still loading. Please try again in a few moments."
            )
    
    try:
        tokenizer, model = get_model()
        result = analyze_code(tokenizer, model, req.language, req.code)
        
        if result is None:
            raise HTTPException(status_code=500, detail="Model failed to return any response.")

        if not isinstance(result, dict):
            logger.warning("⚠️ Model did not return valid JSON, sending raw output")
            return {
                "bugs": [],
                "corrected_code": "",
                "raw_output": result
            }

        return {
            "bugs": result.get("bug_analysis", []),
            "corrected_code": result.get("corrected_code", ""),
            "raw_output": ""
        }
    except Exception as e:
        logger.error(f"Analysis error: {e}")
        raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")

@app.post("/analysis/submit")
async def analyze_for_frontend(req: AnalyzeRequest):
    """Frontend-compatible endpoint with model loading check"""
    logger.info(f"πŸ” Frontend: Received code for analysis ({req.language})")
    
    # Check if model is loaded
    if not is_model_loaded():
        # If model is still loading, return appropriate response
        if model_load_task and not model_load_task.done():
            return {
                "success": False,
                "has_json_output": False,
                "corrected_code": "",
                "issues": [],
                "raw_output": "Model is still loading. Please wait a moment and try again.",
                "model_status": "loading"
            }
        else:
            # Try to wait for model loading
            try:
                await asyncio.wait_for(model_load_task, timeout=30)  # Short timeout for frontend
            except (asyncio.TimeoutError, Exception):
                return {
                    "success": False,
                    "has_json_output": False,
                    "corrected_code": "",
                    "issues": [],
                    "raw_output": "Model is not ready yet. Please try again in a few moments.",
                    "model_status": "loading"
                }
    
    try:
        tokenizer, model = get_model()
        result = analyze_code(tokenizer, model, req.language, req.code)

        
        if result is None:
            return {
                "success": False,
                "has_json_output": False,
                "corrected_code": "",
                "issues": [],
                "raw_output": "Model failed to return any response.",
                "model_status": "error"
            }

        # If result is not valid JSON, return raw output as fallback
        if not isinstance(result, dict):
            logger.warning("⚠️ Model did not return valid JSON, showing raw output")
            return {
                "success": False,
                "has_json_output": False,
                "corrected_code": "",
                "issues": [],
                "raw_output": str(result),
                "model_status": "loaded"
            }

        # Successfully parsed JSON
        bugs = result.get("bug_analysis", [])
        issues = [transform_bug_to_issue(bug) for bug in bugs]
        corrected_code = result.get("corrected_code", "")

        return {
            "success": True,
            "has_json_output": True,
            "corrected_code": corrected_code,
            "issues": issues,
            "raw_output": "",
            "model_status": "loaded"
        }
        
    except Exception as e:
        logger.error(f"Frontend analysis error: {e}")
        return {
            "success": False,
            "has_json_output": False,
            "corrected_code": "",
            "issues": [],
            "raw_output": f"Analysis failed: {str(e)}",
            "model_status": "error"
        }

@app.get("/analysis/history")
async def get_analysis_history():
    """Get analysis history (placeholder)"""
    return {"data": []}
@app.get("/")
async def root():
    return {
        "message": "πŸ‘‹ Bug Explainer ML microservice is running.",
        "status": "OK",
        "model_ready": is_model_loaded()
    }
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)