Spaces:
Sleeping
Sleeping
File size: 13,277 Bytes
f59cf24 6d5a8ce f59cf24 6d5a8ce f59cf24 cf9564b f59cf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# from fastapi import FastAPI, HTTPException
# from fastapi.middleware.cors import CORSMiddleware
# from pydantic import BaseModel
# from model import load_model
# from analyzer import analyze_code
# import logging
# app = FastAPI(
# title="AI Bug Explainer",
# description="An AI service that detects and fixes bugs in code",
# version="1.0.0"
# )
# # CORS setup
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"], # Replace with your frontend URL in prod
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# # Logging setup
# logging.basicConfig(level=logging.INFO)
# class AnalyzeRequest(BaseModel):
# language: str
# code: str
# @app.post("/analyze")
# async def analyze(req: AnalyzeRequest):
# logging.info(f"π Received code for analysis ({req.language})")
# result = analyze_code(req.language, req.code, tokenizer, model)
# if result is None:
# raise HTTPException(status_code=500, detail="Model failed to return any response.")
# if not isinstance(result, dict):
# logging.warning("β οΈ Model did not return valid JSON, sending raw output")
# return {
# "bugs": [],
# "corrected_code": "",
# "raw_output": result
# }
# return {
# "bugs": result.get("bug_analysis", []),
# "corrected_code": result.get("corrected_code", ""),
# "raw_output": "" # So frontend doesn't break
# }
# # Load model
# print("π§ Loading model...")
# tokenizer, model = load_model()
# print("β
Model loaded!")
# from fastapi import FastAPI, HTTPException
# from fastapi.middleware.cors import CORSMiddleware
# from pydantic import BaseModel
# from model import load_model
# from analyzer import analyze_code
# import logging
# app = FastAPI(
# title="AI Bug Explainer ML Microservice",
# description="An AI service that detects and fixes bugs in code",
# version="1.0.0"
# )
# # CORS setup
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"], # Replace with your frontend URL in prod
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# # Logging setup
# logging.basicConfig(level=logging.INFO)
# class AnalyzeRequest(BaseModel):
# language: str
# code: str
# # Transform bug analysis to match frontend expectations
# def transform_bug_to_issue(bug):
# """Transform ML service bug format to frontend issue format"""
# return {
# "lineNumber": bug.get("line_number", 0),
# "type": bug.get("error_message", "Unknown Error"),
# "message": bug.get("explanation", "No explanation provided"),
# "suggestion": bug.get("fix_suggestion", "No suggestion provided")
# }
# # Keep your original endpoint for backward compatibility
# @app.post("/analyze")
# async def analyze(req: AnalyzeRequest):
# logging.info(f"π Received code for analysis ({req.language})")
# result = analyze_code(req.language, req.code, tokenizer, model)
# if result is None:
# raise HTTPException(status_code=500, detail="Model failed to return any response.")
# if not isinstance(result, dict):
# logging.warning("β οΈ Model did not return valid JSON, sending raw output")
# return {
# "bugs": [],
# "corrected_code": "",
# "raw_output": result
# }
# return {
# "bugs": result.get("bug_analysis", []),
# "corrected_code": result.get("corrected_code", ""),
# "raw_output": "" # So frontend doesn't break
# }
# # NEW: Add frontend-compatible endpoint
# @app.post("/analysis/submit")
# async def analyze_for_frontend(req: AnalyzeRequest):
# logging.info(f"π Frontend: Received code for analysis ({req.language})")
# result = analyze_code(req.language, req.code, tokenizer, model)
# if result is None:
# raise HTTPException(status_code=500, detail="Model failed to return any response.")
# # If result is not valid JSON, return raw output as fallback
# if not isinstance(result, dict):
# logging.warning("β οΈ Model did not return valid JSON, showing raw output")
# return {
# "success": False,
# "has_json_output": False,
# "corrected_code": "",
# "issues": [],
# "raw_output": str(result)
# }
# # Successfully parsed JSON
# bugs = result.get("bug_analysis", [])
# issues = [transform_bug_to_issue(bug) for bug in bugs]
# corrected_code = result.get("corrected_code", "")
# return {
# "success": True,
# "has_json_output": True,
# "corrected_code": corrected_code,
# "issues": issues,
# "raw_output": ""
# }
# # Add history endpoint (placeholder for now)
# @app.get("/analysis/history")
# async def get_analysis_history():
# # TODO: Implement database storage for history
# # For now, return empty array to match frontend expectations
# return {"data": []}
# # Health check endpoint
# @app.get("/health")
# async def health_check():
# return {
# "status": "healthy",
# "model_loaded": tokenizer is not None and model is not None
# }
# # Load model
# print("π§ Loading model...")
# tokenizer, model = load_model()
# print("β
Model loaded!")
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=8000)
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from model import load_model_async, get_model, is_model_loaded, get_model_info
from analyzer import analyze_code
import logging
import asyncio
import time
from dotenv import load_dotenv
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
app = FastAPI(
title="AI Bug Explainer ML Microservice",
description="An AI service that detects and fixes bugs in code",
version="1.0.0"
)
# CORS setup
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Replace with your frontend URL in prod
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class AnalyzeRequest(BaseModel):
language: str
code: str
# Global variables for model loading status
model_load_start_time = None
model_load_task = None
def transform_bug_to_issue(bug):
"""Transform ML service bug format to frontend issue format"""
return {
"lineNumber": bug.get("line_number", 0),
"type": bug.get("error_message", "Unknown Error"),
"message": bug.get("explanation", "No explanation provided"),
"suggestion": bug.get("fix_suggestion", "No suggestion provided")
}
@app.on_event("startup")
async def startup_event():
"""Start model loading in background when server starts"""
global model_load_start_time, model_load_task
logger.info("π Starting ML microservice...")
logger.info("π§ Initiating background model loading...")
model_load_start_time = time.time()
# Start model loading in background
model_load_task = asyncio.create_task(load_model_async())
logger.info("β
Server started! Model is loading in background...")
@app.get("/health")
async def health_check():
"""Enhanced health check with model loading status"""
global model_load_start_time
model_info = get_model_info()
loading_time = None
if model_load_start_time:
loading_time = round(time.time() - model_load_start_time, 2)
return {
"status": "healthy",
"model_info": model_info,
"loading_time_seconds": loading_time,
"ready_for_inference": model_info["loaded"]
}
@app.get("/model/status")
async def model_status():
"""Get detailed model loading status"""
global model_load_start_time
model_info = get_model_info()
loading_time = None
if model_load_start_time:
loading_time = round(time.time() - model_load_start_time, 2)
return {
"model_id": model_info["model_id"],
"loaded": model_info["loaded"],
"loading": model_info["loading"],
"loading_time_seconds": loading_time,
"ready": model_info["loaded"]
}
@app.post("/analyze")
async def analyze(req: AnalyzeRequest):
"""Original analyze endpoint with model loading check"""
logger.info(f"π Received code for analysis ({req.language})")
# Check if model is loaded
if not is_model_loaded():
# Wait for model to load (with timeout)
try:
await asyncio.wait_for(model_load_task, timeout=300) # 5 minute timeout
except asyncio.TimeoutError:
raise HTTPException(
status_code=503,
detail="Model is still loading. Please try again in a few moments."
)
try:
tokenizer, model = get_model()
result = analyze_code(tokenizer, model, req.language, req.code)
if result is None:
raise HTTPException(status_code=500, detail="Model failed to return any response.")
if not isinstance(result, dict):
logger.warning("β οΈ Model did not return valid JSON, sending raw output")
return {
"bugs": [],
"corrected_code": "",
"raw_output": result
}
return {
"bugs": result.get("bug_analysis", []),
"corrected_code": result.get("corrected_code", ""),
"raw_output": ""
}
except Exception as e:
logger.error(f"Analysis error: {e}")
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
@app.post("/analysis/submit")
async def analyze_for_frontend(req: AnalyzeRequest):
"""Frontend-compatible endpoint with model loading check"""
logger.info(f"π Frontend: Received code for analysis ({req.language})")
# Check if model is loaded
if not is_model_loaded():
# If model is still loading, return appropriate response
if model_load_task and not model_load_task.done():
return {
"success": False,
"has_json_output": False,
"corrected_code": "",
"issues": [],
"raw_output": "Model is still loading. Please wait a moment and try again.",
"model_status": "loading"
}
else:
# Try to wait for model loading
try:
await asyncio.wait_for(model_load_task, timeout=30) # Short timeout for frontend
except (asyncio.TimeoutError, Exception):
return {
"success": False,
"has_json_output": False,
"corrected_code": "",
"issues": [],
"raw_output": "Model is not ready yet. Please try again in a few moments.",
"model_status": "loading"
}
try:
tokenizer, model = get_model()
result = analyze_code(tokenizer, model, req.language, req.code)
if result is None:
return {
"success": False,
"has_json_output": False,
"corrected_code": "",
"issues": [],
"raw_output": "Model failed to return any response.",
"model_status": "error"
}
# If result is not valid JSON, return raw output as fallback
if not isinstance(result, dict):
logger.warning("β οΈ Model did not return valid JSON, showing raw output")
return {
"success": False,
"has_json_output": False,
"corrected_code": "",
"issues": [],
"raw_output": str(result),
"model_status": "loaded"
}
# Successfully parsed JSON
bugs = result.get("bug_analysis", [])
issues = [transform_bug_to_issue(bug) for bug in bugs]
corrected_code = result.get("corrected_code", "")
return {
"success": True,
"has_json_output": True,
"corrected_code": corrected_code,
"issues": issues,
"raw_output": "",
"model_status": "loaded"
}
except Exception as e:
logger.error(f"Frontend analysis error: {e}")
return {
"success": False,
"has_json_output": False,
"corrected_code": "",
"issues": [],
"raw_output": f"Analysis failed: {str(e)}",
"model_status": "error"
}
@app.get("/analysis/history")
async def get_analysis_history():
"""Get analysis history (placeholder)"""
return {"data": []}
@app.get("/")
async def root():
return {
"message": "π Bug Explainer ML microservice is running.",
"status": "OK",
"model_ready": is_model_loaded()
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |