File size: 23,056 Bytes
894c3a3
5cd0c37
 
 
 
 
 
 
 
 
2d774d8
4be0bfd
7e08e15
2d774d8
 
 
 
 
5cd0c37
 
 
 
2d774d8
 
 
 
5cd0c37
894c3a3
e62d790
2d774d8
 
 
 
 
 
 
 
 
5cd0c37
 
 
 
 
 
 
 
 
 
2d774d8
5cd0c37
2d774d8
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
2d774d8
5cd0c37
 
2d774d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4be0bfd
2d774d8
 
 
 
5cd0c37
 
 
2d774d8
 
 
5cd0c37
 
 
 
 
894c3a3
 
 
 
2d774d8
 
 
 
 
 
 
 
 
 
 
894c3a3
 
2d774d8
5cd0c37
 
894c3a3
2d774d8
5cd0c37
894c3a3
5cd0c37
2d774d8
 
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
894c3a3
2d774d8
7e08e15
5cd0c37
 
 
 
 
 
 
894c3a3
 
 
 
 
 
 
 
5cd0c37
894c3a3
 
 
 
 
 
 
 
 
 
2d774d8
5cd0c37
 
 
2d774d8
5cd0c37
 
 
 
 
 
 
 
 
 
894c3a3
5cd0c37
 
 
 
 
 
2d774d8
5cd0c37
 
 
 
 
2d774d8
5cd0c37
 
2d774d8
5cd0c37
 
 
2d774d8
5cd0c37
 
 
 
894c3a3
5cd0c37
 
 
 
 
 
 
 
4be0bfd
5cd0c37
 
 
 
 
 
 
 
 
 
2d774d8
 
 
5cd0c37
894c3a3
5cd0c37
2d774d8
4be0bfd
5cd0c37
 
2d774d8
5cd0c37
 
894c3a3
5cd0c37
894c3a3
 
 
 
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d774d8
 
5cd0c37
894c3a3
5cd0c37
 
 
 
 
 
 
 
 
 
 
894c3a3
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894c3a3
 
 
 
 
5cd0c37
894c3a3
 
 
 
 
 
 
 
 
5cd0c37
 
 
 
 
2d774d8
 
 
 
 
 
 
 
 
5cd0c37
 
 
 
 
894c3a3
 
 
 
 
 
 
 
 
 
 
 
 
 
e62d790
894c3a3
e62d790
894c3a3
 
 
 
 
e62d790
 
 
894c3a3
 
 
 
 
 
 
 
 
 
 
e62d790
 
 
894c3a3
 
 
 
 
 
 
 
 
 
 
 
 
 
e62d790
894c3a3
e62d790
894c3a3
 
 
 
 
e62d790
 
 
 
 
894c3a3
 
 
 
 
 
 
 
 
 
e62d790
 
 
894c3a3
5cd0c37
 
e62d790
5cd0c37
 
894c3a3
 
5cd0c37
 
 
 
 
cb7ec0c
894c3a3
5cd0c37
 
 
894c3a3
5cd0c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d774d8
5cd0c37
 
894c3a3
 
a94f5c9
2d774d8
 
 
 
 
 
 
 
 
 
 
 
 
 
4be0bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
from fastapi import FastAPI, HTTPException, Header
from pydantic import BaseModel
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import base64
import os
import logging
from datetime import datetime
from fastapi.responses import HTMLResponse
from simple_salesforce import Salesforce
from dotenv import load_dotenv
from datasets import load_dataset

# Load environment variables
load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

app = FastAPI()

# Environment variables
SF_USERNAME = os.getenv("SF_USERNAME")
SF_PASSWORD = os.getenv("SF_PASSWORD")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN")
SF_DOMAIN = os.getenv("SF_DOMAIN", "login")
API_KEY = os.getenv("HUGGINGFACE_API_KEY")

# Validate environment variables
required_env_vars = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN", "HUGGINGFACE_API_KEY"]
for var in required_env_vars:
    if not os.getenv(var):
        logger.error(f"Environment variable {var} is not set")
        raise ValueError(f"Environment variable {var} is not set")

# Salesforce connection
sf = None
try:
    sf = Salesforce(
        username=SF_USERNAME,
        password=SF_PASSWORD,
        security_token=SF_SECURITY_TOKEN,
        domain=SF_DOMAIN
    )
    logger.info("Successfully connected to Salesforce")
except Exception as e:
    logger.error(f"Failed to connect to Salesforce: {str(e)}")
    raise RuntimeError(f"Cannot connect to Salesforce: {str(e)}")

# VendorLog model
class VendorLog(BaseModel):
    vendorLogId: str
    vendorId: str
    vendorRecordId: str
    workDetails: str
    qualityReport: str
    incidentLog: str
    workCompletionDate: str
    actualCompletionDate: str
    vendorLogName: str
    delayDays: int
    project: str

# Store vendor logs
vendor_logs = []

def validate_salesforce_fields():
    """Validate required Salesforce fields"""
    try:
        vendor_log_fields = [f['name'] for f in sf.Vendor_Log__c.describe()['fields']]
        required_vendor_fields = [
            'Vendor__c', 'Work_Completion_Percentage__c', 'Quality_Percentage__c',
            'Incident_Severity__c', 'Work_Completion_Date__c', 'Actual_Completion_Date__c',
            'Delay_Days__c', 'Project__c'
        ]
        for field in required_vendor_fields:
            if field not in vendor_log_fields:
                logger.error(f"Field {field} not found in Vendor_Log__c")
                raise ValueError(f"Field {field} not found in Vendor_Log__c")

        score_fields = [f['name'] for f in sf.Subcontractor_Performance_Score__c.describe()['fields']]
        required_score_fields = [
            'Vendor_Log__c', 'Vendor__c', 'Quality_Score__c', 'Timeliness_Score__c',
            'Safety_Score__c', 'Communication_Score__c', 'Alert_Flag__c', 'PDF_Link__c'
        ]
        for field in required_score_fields:
            if field not in score_fields:
                logger.error(f"Field {field} not found in Subcontractor_Performance_Score__c")
                raise ValueError(f"Field {field} not found in Subcontractor_Performance_Score__c")
        logger.info("Salesforce fields validated successfully")
    except Exception as e:
        logger.error(f"Error validating Salesforce fields: {str(e)}")
        raise

# Validate fields on startup
validate_salesforce_fields()

def fetch_huggingface_records(dataset_name: str = "imdb"):
    """Fetch records from a Hugging Face dataset."""
    try:
        os.environ["HUGGINGFACE_TOKEN"] = API_KEY
        dataset = load_dataset(dataset_name)
        logger.info(f"Successfully fetched dataset: {dataset_name}")
        records = [record for record in dataset['train']]  # Assuming 'train' split
        return records[:10]  # Limit to 10 records
    except Exception as e:
        logger.error(f"Error fetching Hugging Face dataset {dataset_name}: {str(e)}")
        return []

def fetch_vendor_logs_from_salesforce():
    try:
        query = """
        SELECT Id, Name, Vendor__c, Work_Completion_Percentage__c, Quality_Percentage__c, 
               Incident_Severity__c, Work_Completion_Date__c, Actual_Completion_Date__c, 
               Delay_Days__c, Project__c
        FROM Vendor_Log__c
        """
        result = sf.query_all(query)
        logs = []
        for record in result['records']:
            if not record['Vendor__c']:
                logger.warning(f"Skipping Vendor_Log__c record with ID {record['Id']} due to missing Vendor__c")
                continue
            log = VendorLog(
                vendorLogId=record.get('Id', 'Unknown'),
                vendorId=record.get('Name', 'Unknown'),
                vendorRecordId=record.get('Vendor__c', 'Unknown'),
                workDetails=str(record.get('Work_Completion_Percentage__c', 0.0)),
                qualityReport=str(record.get('Quality_Percentage__c', 0.0)),
                incidentLog=record.get('Incident_Severity__c', 'None'),
                workCompletionDate=record.get('Work_Completion_Date__c', 'N/A'),
                actualCompletionDate=record.get('Actual_Completion_Date__c', 'N/A'),
                vendorLogName=record.get('Name', 'Unknown'),
                delayDays=int(record.get('Delay_Days__c', 0)),
                project=record.get('Project__c', 'Unknown')
            )
            logs.append(log)
        logger.info(f"Fetched {len(logs)} vendor logs")
        return logs
    except Exception as e:
        logger.error(f"Error fetching vendor logs from Salesforce: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error fetching vendor logs: {str(e)}")

def calculate_scores(log: VendorLog):
    try:
        work_completion_percentage = float(log.workDetails or 0.0)
        quality_percentage = float(log.qualityReport or 0.0)

        quality_score = quality_percentage
        timeliness_score = 100.0 if log.delayDays <= 0 else 80.0 if log.delayDays <= 3 else 60.0 if log.delayDays <= 7 else 40.0
        severity_map = {'None': 100.0, 'Low': 80.0, 'Minor': 80.0, 'Medium': 50.0, 'High': 20.0}
        safety_score = severity_map.get(log.incidentLog, 100.0)
        communication_score = (quality_score * 0.33 + timeliness_score * 0.33 + safety_score * 0.33)

        return {
            'qualityScore': round(quality_score, 2),
            'timelinessScore': round(timeliness_score, 2),
            'safetyScore': round(safety_score, 2),
            'communicationScore': round(communication_score, 2)
        }
    except Exception as e:
        logger.error(f"Error calculating scores: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error calculating scores: {str(e)}")

def get_feedback(score: float, metric: str) -> str:
    try:
        if score >= 90:
            return "Excellent: Maintain this standard"
        elif score >= 70:
            return "Good: Keep up the good work"
        elif score >= 50:
            if metric == 'Timeliness':
                return "Needs Improvement: Maintain schedules to complete tasks on time"
            elif metric == 'Safety':
                return "Needs Improvement: Implement stricter safety protocols"
            elif metric == 'Quality':
                return "Needs Improvement: Focus on improving work quality"
            else:
                return "Needs Improvement: Enhance coordination with project teams"
        else:
            if metric == 'Timeliness':
                return "Poor: Significant delays detected"
            elif metric == 'Safety':
                return "Poor: Critical safety issues identified"
            elif metric == 'Quality':
                return "Poor: Quality standards not met"
            else:
                return "Poor: Communication issues detected"
    except Exception as e:
        logger.error(f"Error generating feedback: {str(e)}")
        return "Feedback unavailable"

def generate_pdf(vendor_id: str, vendor_log_name: str, scores: dict):
    try:
        filename = f'report_{vendor_id}_{datetime.now().strftime("%Y%m%d%H%M%S")}.pdf'
        c = canvas.Canvas(filename, pagesize=letter)
        c.setFont('Helvetica', 12)
        c.drawString(100, 750, 'Subcontractor Performance Report')
        c.drawString(100, 730, f'Vendor ID: {vendor_id}')
        c.drawString(100, 710, f'Vendor Log Name: {vendor_log_name}')
        c.drawString(100, 690, f'Quality Score: {scores["qualityScore"]}% ({get_feedback(scores["qualityScore"], "Quality")})')
        c.drawString(100, 670, f'Timeliness Score: {scores["timelinessScore"]}% ({get_feedback(scores["timelinessScore"], "Timeliness")})')
        c.drawString(100, 650, f'Safety Score: {scores["safetyScore"]}% ({get_feedback(scores["safetyScore"], "Safety")})')
        c.drawString(100, 630, f'Communication Score: {scores["communicationScore"]}% ({get_feedback(scores["communicationScore"], "Communication")})')
        c.save()

        with open(filename, 'rb') as f:
            pdf_content = f.read()
        os.remove(filename)
        return pdf_content
    except Exception as e:
        logger.error(f"Error generating PDF: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating PDF: {str(e)}")

def determine_alert_flag(scores: dict, all_logs: list):
    try:
        if not all_logs:
            return False
        avg_score = sum(scores.values()) / 4
        if avg_score < 50:
            return True
        lowest_avg = min([sum(log['scores'].values()) / 4 for log in all_logs], default=avg_score)
        return avg_score == lowest_avg
    except Exception as e:
        logger.error(f"Error determining alert flag: {str(e)}")
        return False

def store_scores_in_salesforce(log: VendorLog, scores: dict, pdf_content: bytes, alert_flag: bool):
    try:
        score_record = sf.Subcontractor_Performance_Score__c.create({
            'Vendor_Log__c': log.vendorLogId,
            'Vendor__c': log.vendorRecordId,
            'Quality_Score__c': scores['qualityScore'],
            'Timeliness_Score__c': scores['timelinessScore'],
            'Safety_Score__c': scores['safetyScore'],
            'Communication_Score__c': scores['communicationScore'],
            'Alert_Flag__c': alert_flag
        })
        score_record_id = score_record['id']
        logger.info(f"Created Subcontractor_Performance_Score__c record with ID: {score_record_id}")

        pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
        content_version = sf.ContentVersion.create({
            'Title': f'Performance_Report_{log.vendorId}',
            'PathOnClient': f'report_{log.vendorId}.pdf',
            'VersionData': pdf_base64,
            'FirstPublishLocationId': score_record_id
        })
        content_version_id = content_version['id']
        content_version_record = sf.query(f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
        if content_version_record['totalSize'] == 0:
            logger.error(f"No ContentVersion for ID: {content_version_id}")
            raise ValueError("Failed to retrieve ContentDocumentId")
        content_document_id = content_version_record['records'][0]['ContentDocumentId']
        
        pdf_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_document_id}"
        sf.Subcontractor_Performance_Score__c.update(score_record_id, {'PDF_Link__c': pdf_url})
        logger.info(f"Updated Subcontractor_Performance_Score__c record with PDF URL: {pdf_url}")
    except Exception as e:
        logger.error(f"Error storing scores in Salesforce: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error storing scores: {str(e)}")

@app.post('/score')
async def score_vendor(log: VendorLog, authorization: str = Header(...)):
    try:
        logger.info(f"Received Vendor Log: {log}")
        if authorization != f'Bearer {API_KEY}':
            raise HTTPException(status_code=401, detail='Invalid API key')

        scores = calculate_scores(log)
        pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
        pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
        alert_flag = determine_alert_flag(scores, vendor_logs)
        store_scores_in_salesforce(log, scores, pdf_content, alert_flag)

        vendor_logs.append({
            'vendorLogId': log.vendorLogId,
            'vendorId': log.vendorId,
            'vendorLogName': log.vendorLogName,
            'workDetails': log.workDetails,
            'qualityReport': log.qualityReport,
            'incidentLog': log.incidentLog,
            'workCompletionDate': log.workCompletionDate,
            'actualCompletionDate': log.actualCompletionDate,
            'delayDays': log.delayDays,
            'project': log.project,
            'scores': scores,
            'extracted': True
        })

        return {
            'vendorLogId': log.vendorLogId,
            'vendorId': log.vendorId,
            'vendorLogName': log.vendorLogName,
            'qualityScore': scores['qualityScore'],
            'timelinessScore': scores['timelinessScore'],
            'safetyScore': scores['safetyScore'],
            'communicationScore': scores['communicationScore'],
            'pdfContent': pdf_base64,
            'alert': alert_flag
        }
    except HTTPException as e:
        raise
    except Exception as e:
        logger.error(f"Error in /score endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error processing vendor log: {str(e)}")

@app.get('/', response_class=HTMLResponse)
async def get_dashboard():
    try:
        global vendor_logs
        fetched_logs = fetch_vendor_logs_from_salesforce()
        for log in fetched_logs:
            if not any(existing_log['vendorLogId'] == log.vendorLogId for existing_log in vendor_logs):
                scores = calculate_scores(log)
                pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
                pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
                alert_flag = determine_alert_flag(scores, vendor_logs)
                store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
                vendor_logs.append({
                    'vendorLogId': log.vendorLogId,
                    'vendorId': log.vendorId,
                    'vendorLogName': log.vendorLogName,
                    'workDetails': log.workDetails,
                    'qualityReport': log.qualityReport,
                    'incidentLog': log.incidentLog,
                    'workCompletionDate': log.workCompletionDate,
                    'actualCompletionDate': log.actualCompletionDate,
                    'delayDays': log.delayDays,
                    'project': log.project,
                    'scores': scores,
                    'extracted': True
                })

        html_content = """
        <html>
            <head>
                <title>Subcontractor Performance Score App</title>
                <style>
                    body { font-family: Arial, sans-serif; margin: 20px; }
                    table { width: 100%; border-collapse: collapse; margin-top: 20px; }
                    th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }
                    th { background-color: #f2f2f2; }
                    h1, h2 { text-align: center; }
                    .generate-btn { 
                        display: block; 
                        margin: 20px auto; 
                        padding: 10px 20px; 
                        background-color: #4CAF50; 
                        color: white; 
                        border: none; 
                        border-radius: 5px; 
                        cursor: pointer; 
                        font-size: 16px; 
                    }
                    .generate-btn:hover { background-color: #45a049; }
                </style>
                <script>
                    async function generateScores() {
                        try {
                            const response = await fetch('/generate', { method: 'POST' });
                            if (response.ok) {
                                window.location.reload();
                            } else {
                                alert('Error generating scores');
                            }
                        } catch (error) {
                            alert('Error: ' + error.message);
                        }
                    }
                </script>
            </head>
            <body>
                <h1>SUBCONTRACTOR PERFORMANCE SCORE APP GENERATOR</h1>
                <h2>VENDOR LOGS SUBMISSION</h2>
                <table>
                    <tr>
                        <th>Vendor ID</th>
                        <th>Vendor Log Name</th>
                        <th>Project</th>
                        <th>Work Completion Percentage</th>
                        <th>Quality Percentage</th>
                        <th>Incident Severity</th>
                        <th>Work Completion Date</th>
                        <th>Actual Completion Date</th>
                        <th>Delay Days</th>
                    </tr>
        """

        if not vendor_logs:
            html_content += """
                    <tr>
                        <td colspan="9" style="text-align: center;">No vendor logs available</td>
                    </tr>
            """
        else:
            for log in vendor_logs:
                html_content += f"""
                        <tr>
                            <td>{log['vendorId']}</td>
                            <td>{log['vendorLogName']}</td>
                            <td>{log['project']}</td>
                            <td>{log['workDetails']}</td>
                            <td>{log['qualityReport']}</td>
                            <td>{log['incidentLog']}</td>
                            <td>{log['workCompletionDate']}</td>
                            <td>{log['actualCompletionDate']}</td>
                            <td>{log['delayDays']}</td>
                        </tr>
                """

        html_content += """
                </table>
                <button class="generate-btn" onclick="generateScores()">Generate</button>
                <h2>SUBCONTRACTOR PERFORMANCE SCORES</h2>
                <table>
                    <tr>
                        <th>Vendor ID</th>
                        <th>Vendor Log Name</th>
                        <th>Project</th>
                        <th>Quality Score</th>
                        <th>Timeliness Score</th>
                        <th>Safety Score</th>
                        <th>Communication Score</th>
                        <th>Alert Flag</th>
                    </tr>
        """

        if not vendor_logs:
            html_content += """
                    <tr>
                        <td colspan="8" style="text-align: center;">No scores available</td>
                    </tr>
            """
        else:
            for log in vendor_logs:
                scores = log['scores']
                alert_flag = determine_alert_flag(scores, vendor_logs)
                html_content += f"""
                        <tr>
                            <td>{log['vendorId']}</td>
                            <td>{log['vendorLogName']}</td>
                            <td>{log['project']}</td>
                            <td>{scores['qualityScore']}%</td>
                            <td>{scores['timelinessScore']}%</td>
                            <td>{scores['safetyScore']}%</td>
                            <td>{scores['communicationScore']}%</td>
                            <td>{'Checked' if alert_flag else 'Unchecked'}</td>
                        </tr>
                """

        html_content += """
                </table>
            </body>
        </html>
        """
        return HTMLResponse(content=html_content)
    except Exception as e:
        logger.error(f"Error in / endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating dashboard: {str(e)}")

@app.post('/generate')
async def generate_scores():
    try:
        global vendor_logs
        fetched_logs = fetch_vendor_logs_from_salesforce()
        vendor_logs = []
        for log in fetched_logs:
            scores = calculate_scores(log)
            pdf_content = generate_pdf(log.vendorId, log.vendorLogName, scores)
            pdf_base64 = base64.b64encode(pdf_content).decode('utf-8')
            alert_flag = determine_alert_flag(scores, vendor_logs)
            store_scores_in_salesforce(log, scores, pdf_content, alert_flag)
            vendor_logs.append({
                'vendorLogId': log.vendorLogId,
                'vendorId': log.vendorId,
                'vendorLogName': log.vendorLogName,
                'workDetails': log.workDetails,
                'qualityReport': log.qualityReport,
                'incidentLog': log.incidentLog,
                'workCompletionDate': log.workCompletionDate,
                'actualCompletionDate': log.actualCompletionDate,
                'delayDays': log.delayDays,
                'project': log.project,
                'scores': scores,
                'extracted': True
            })
        logger.info(f"Generated scores for {len(vendor_logs)} logs")
        return {"status": "success"}
    except Exception as e:
        logger.error(f"Error in /generate endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error generating scores: {str(e)}")

@app.get('/huggingface-records')
async def get_huggingface_records():
    """Fetch and return Hugging Face dataset records."""
    try:
        records = fetch_huggingface_records()
        if not records:
            raise HTTPException(status_code=404, detail="No records fetched from Hugging Face")
        return {"records": records}
    except Exception as e:
        logger.error(f"Error fetching Hugging Face records: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Failed to fetch Hugging Face records: {str(e)}")

@app.get('/debug')
async def debug_info():
    """Return debug information about Salesforce and Hugging Face."""
    try:
        log_count = sf.query("SELECT COUNT() FROM Vendor_Log__c")['totalSize']
        fields = [f['name'] for f in sf.Vendor_Log__c.describe()['fields']]
        score_fields = [f['name'] for f in sf.Subcontractor_Performance_Score__c.describe()['fields']]
        hf_records = fetch_huggingface_records()
        return {
            "salesforce_connected": True,
            "vendor_log_count": log_count,
            "vendor_log_fields": fields,
            "score_fields": score_fields,
            "huggingface_records_sample": hf_records
        }
    except Exception as e:
        logger.error(f"Debug error: {str(e)}")
        return {"salesforce_connected": False, "error": str(e)}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)