Symbiomatrix's picture
Create app.py
d8d9de5
# GPT3 code. Nonsensical on the sketch.
import cv2
import numpy as np
import gradio as gr
import colorsys
POLYFACTOR = 1.5 # Small lines are detected as shapes.
CCOLOUR = 0 # Should be a form controlled thing.
COLREG = None # Computer colour regions. Array. Extended whenever a new colour is requested.
IDIM = 256
CBLACK = 255
VARIANT = 0 # Ensures that the sketch canvas is actually refreshed.
# BREAKTHROUGH:
# Sketch can be overridden via controlnet method of creation, an np array with type,
# when varying the shape a bit.
def generate_unique_colors(n):
"""Generate n visually distinct colors as a list of RGB tuples.
Uses the hue of hsv, with balanced saturation & value.
"""
hsv_colors = [(x*1.0/n, 0.5, 0.5) for x in range(n)]
rgb_colors = [tuple(int(i * CBLACK) for i in colorsys.hsv_to_rgb(*hsv)) for hsv in hsv_colors]
return rgb_colors
def deterministic_colours(n, lcol = None):
"""Generate n visually distinct & consistent colours as a list of RGB tuples.
Uses the hue of hsv, with balanced saturation & value.
Goes around the cyclical 0-256 and picks each /2 value for every round.
Continuation rules: If pcyv != ccyv in next round, then we don't care.
If pcyv == ccyv, we want to get the cval + delta of last elem.
If lcol > n, will return it as is.
"""
if n <= 0:
return None
pcyc = -1
cval = 0
if lcol is None:
st = 0
elif n <= len(lcol):
# return lcol[:n] # Truncating the list is accurate, but pointless.
return lcol
else:
st = len(lcol)
if st > 0:
pcyc = np.ceil(np.log2(st))
# This is erroneous on st=2^n, but we don't care.
dlt = 1 / (2 ** pcyc)
cval = dlt + 2 * dlt * (st % (2 ** (pcyc - 1)) - 1)
lhsv = []
for i in range(st,n):
ccyc = np.ceil(np.log2(i + 1))
if ccyc == 0: # First col = 0.
cval = 0
pcyc = ccyc
elif pcyc != ccyc: # New cycle, start from the half point between 0 and first point.
dlt = 1 / (2 ** ccyc)
cval = dlt
pcyc = ccyc
else:
cval = cval + 2 * dlt # Jumps over existing vals.
lhsv.append(cval)
lhsv = [(v, 0.5, 0.5) for v in lhsv] # Hsv conversion only works 0:1.
lrgb = [colorsys.hsv_to_rgb(*hsv) for hsv in lhsv]
lrgb = (np.array(lrgb) * (CBLACK + 1)).astype(np.uint8) # Convert to colour uints.
lrgb = lrgb.reshape(-1, 3)
if lcol is not None:
lrgb = np.concatenate([lcol, lrgb])
return lrgb
def detect_polygons(img,num):
global CCOLOUR
global COLREG
global VARIANT
# I dunno why, but mask has a 4th colour channel, which contains nothing. Alpha?
if VARIANT != 0:
out = img["image"][:-VARIANT,:-VARIANT,:3]
img = img["mask"][:-VARIANT,:-VARIANT,:3]
else:
out = img["image"][:,:,:3]
img = img["mask"][:,:,:3]
# Convert the binary image to grayscale
if img is None:
img = np.zeros([IDIM,IDIM,3],dtype = np.uint8) + CBLACK # Stupid cv.
if out is None:
out = np.zeros_like(img) + CBLACK # Stupid cv.
bimg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Find contours in the image
# Must reverse colours, otherwise draws an outer box (0->255). Dunno why gradio uses 255 for white anyway.
contours, hierarchy = cv2.findContours(bimg, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#img2 = np.zeros_like(img) + 255 # Fresh image.
img2 = out # Update current image.
# color = np.random.randint(0,255,3)
# color = deterministic_colours(CCOLOUR + 1)[-1]
# CCOLOUR = CCOLOUR +1
COLREG = deterministic_colours(int(num) + 1, COLREG)
color = COLREG[int(num),:]
# Loop through each contour and detect polygons
for cnt in contours:
# Approximate the contour to a polygon
approx = cv2.approxPolyDP(cnt, 0.0001 * cv2.arcLength(cnt, True), True)
# If the polygon has 3 or more sides and is fully enclosed, fill it with a random color
# if len(approx) >= 3: # BAD test.
if cv2.contourArea(cnt) > cv2.arcLength(cnt, True) * POLYFACTOR: # Better, still messes up on large brush.
#SBM BUGGY, prevents contours from . cv2.pointPolygonTest(approx, (approx[0][0][0], approx[0][0][1]), False) >= 0:
# Check if the polygon has already been filled
# if i not in filled_polygons: # USELESS
# Draw the polygon on the image with a new random color
color = [int(v) for v in color] # Opencv is dumb / C based and can't handle an int64 array.
#cv2.drawContours(img2, [approx], 0, color = color) # Only outer sketch.
cv2.fillPoly(img2,[approx],color = color)
# Add the polygon to the set of filled polygons
# filled_polygons.add(i)
# Convert the grayscale image back to RGB
#img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB) # Converting to grayscale is dumb.
skimg = create_canvas(img2.shape[0], img2.shape[1])
if VARIANT != 0:
skimg[:-VARIANT,:-VARIANT,:] = img2
else:
skimg[:,:,:] = img2
return skimg, num + 1 if num + 1 <= CBLACK else num
def detect_mask(img,num):
color = deterministic_colours(int(num) + 1)[-1]
color = color.reshape([1,1,3])
mask = ((img["image"] == color).all(-1)) * CBLACK
return mask
def create_canvas(h, w):
"""New canvas area.
Small variant value is added (and ignored later) due to gradio refresh bug.
"""
global VARIANT
VARIANT = 1 - VARIANT
vret = np.zeros(shape=(h + VARIANT, w + VARIANT, 3), dtype=np.uint8) + CBLACK
return vret
# Define the Gradio interface
# Create the Gradio interface and link it to the polygon detection function
# gr.Interface(detect_polygons, inputs=[sketch,output], outputs=output, title="Polygon Detection",
# description="Detect and fill closed shapes with different random colors.").launch()
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
# Gradio shape is dumb.
# sketch = gr.Image(shape=(IDIM, IDIM),source = "canvas", tool = "color-sketch")#,brush_radius = 1) # No brush radius in 16.2.
sketch = gr.Image(source = "upload", mirror_webcam = False, type = "numpy", tool = "sketch")
# sketch = gr.Image(shape=(256, 256),source = "upload", tool = "color-sketch")
#num = gr.Number(value = 0)
num = gr.Slider(label="Region", minimum=0, maximum=CBLACK, step=1, value=0)
btn = gr.Button(value = "Draw region")
btn2 = gr.Button(value = "Display mask")
canvas_width = gr.Slider(label="Canvas Width", minimum=64, maximum=2048, value=512, step=8)
canvas_height = gr.Slider(label="Canvas Height", minimum=64, maximum=2048, value=512, step=8)
cbtn = gr.Button(value="Create mask area")
with gr.Column():
# Cannot update sketch in 16.2, must add to different image.
# output = gr.Image(shape=(IDIM, IDIM), source = "upload")
# output = gr.Image(source = "upload")
output2 = gr.Image(shape=(IDIM, IDIM))
btn.click(detect_polygons, inputs = [sketch,num], outputs = [sketch,num])
btn2.click(detect_mask, inputs = [sketch,num], outputs = [output2])
cbtn.click(fn=create_canvas, inputs=[canvas_height, canvas_width], outputs=[sketch])
if __name__ == "__main__":
demo.launch()