Spaces:
Running
on
L4
Running
on
L4
import math | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from decord import VideoReader, cpu | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from neus_v.video.read_video import read_video | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size: int) -> T.Compose: | |
"""Builds a transformation pipeline for the given input size.""" | |
mean, std = IMAGENET_MEAN, IMAGENET_STD | |
return T.Compose( | |
[ | |
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | |
T.Resize( | |
(input_size, input_size), | |
interpolation=InterpolationMode.BICUBIC, | |
), | |
T.ToTensor(), | |
T.Normalize(mean=mean, std=std), | |
] | |
) | |
def assign_device_map(model_name, manual_gpu_id=0): | |
device_map = {} | |
world_size = torch.cuda.device_count() | |
num_layers = { | |
"InternVL2-1B": 24, | |
"InternVL2-2B": 24, | |
"InternVL2-4B": 32, | |
"InternVL2-8B": 32, | |
"InternVL2-26B": 48, | |
"InternVL2-40B": 60, | |
"InternVL2-Llama3-76B": 80, | |
}[model_name] | |
for layer_idx in range(num_layers): | |
device_map[f"language_model.model.layers.{layer_idx}"] = manual_gpu_id | |
device_map["vision_model"] = manual_gpu_id | |
device_map["mlp1"] = manual_gpu_id | |
device_map["language_model.model.tok_embeddings"] = manual_gpu_id | |
device_map["language_model.model.embed_tokens"] = manual_gpu_id | |
device_map["language_model.output"] = manual_gpu_id | |
device_map["language_model.model.norm"] = manual_gpu_id | |
device_map["language_model.lm_head"] = manual_gpu_id | |
device_map[f"language_model.model.layers.{num_layers - 1}"] = manual_gpu_id | |
return device_map | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float("inf") | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
# Convert numpy array to PIL Image if needed | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) | |
for n in range(min_num, max_num + 1) | |
for i in range(1, n + 1) | |
for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size, | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def load_image(image, input_size=448, max_num=12): | |
transform = build_transform(input_size=input_size) | |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
return pixel_values | |
def split_model(model_name): | |
device_map = {} | |
world_size = torch.cuda.device_count() | |
num_layers = { | |
"InternVL2-1B": 24, | |
"InternVL2-2B": 24, | |
"InternVL2-4B": 32, | |
"InternVL2-8B": 32, | |
"InternVL2-26B": 48, | |
"InternVL2-40B": 60, | |
"InternVL2-Llama3-76B": 80, | |
}[model_name] | |
# Since the first GPU will be used for ViT, treat it as half a GPU. | |
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) | |
num_layers_per_gpu = [num_layers_per_gpu] * world_size | |
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) | |
layer_cnt = 0 | |
for i, num_layer in enumerate(num_layers_per_gpu): | |
for j in range(num_layer): | |
device_map[f"language_model.model.layers.{layer_cnt}"] = i | |
layer_cnt += 1 | |
device_map["vision_model"] = 0 | |
device_map["mlp1"] = 0 | |
device_map["language_model.model.tok_embeddings"] = 0 | |
device_map["language_model.model.embed_tokens"] = 0 | |
device_map["language_model.output"] = 0 | |
device_map["language_model.model.norm"] = 0 | |
device_map["language_model.lm_head"] = 0 | |
device_map[f"language_model.model.layers.{num_layers - 1}"] = 0 | |
return device_map | |
def move_tensors_to_gpu(module): | |
for name, tensor in module.named_buffers(): | |
if isinstance(tensor, torch.Tensor) and tensor.device.type == "cpu": | |
module.register_buffer(name, tensor.cuda(), persistent=False) | |
for _, param in module.named_parameters(): | |
if param.device.type == "cpu": | |
param.data = param.data.cuda() | |
# video multi-round conversation (视频多轮对话) | |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): | |
if bound: | |
start, end = bound[0], bound[1] | |
else: | |
start, end = -100000, 100000 | |
start_idx = max(first_idx, round(start * fps)) | |
end_idx = min(round(end * fps), max_frame) | |
seg_size = float(end_idx - start_idx) / num_segments | |
frame_indices = np.array( | |
[int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)] | |
) | |
return frame_indices | |
def load_video_from_file( | |
video_path: str, input_size=448, max_num=1, device="cuda", dtype=torch.bfloat16 # Add dtype parameter | |
): | |
video = read_video(video_path) | |
pixel_values_list, num_patches_list = [], [] | |
transform = build_transform(input_size=input_size) | |
while True: | |
img: np.ndarray = video.get_next_frame( | |
return_format="pil", | |
desired_interval_in_sec=1, | |
) | |
if img is None: | |
break # No more frames or end of video | |
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(tile) for tile in img] | |
pixel_values = torch.stack(pixel_values) | |
num_patches_list.append(pixel_values.shape[0]) | |
pixel_values_list.append(pixel_values.to(device)) | |
return torch.cat(pixel_values_list), num_patches_list | |
def load_video_from_seq_of_frames( | |
seq_of_frames: list[np.ndarray], | |
input_size=448, | |
max_num=1, | |
device="cuda", | |
dtype=torch.bfloat16, # Add dtype parameter | |
): | |
pixel_values_list, num_patches_list = [], [] | |
transform = build_transform(input_size=input_size) | |
for img in seq_of_frames: | |
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(tile) for tile in img] | |
pixel_values = torch.stack(pixel_values).to(dtype=dtype, device=device) # Convert to bfloat16 | |
num_patches_list.append(pixel_values.shape[0]) | |
pixel_values_list.append(pixel_values) | |
return torch.cat(pixel_values_list), num_patches_list | |
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
max_frame = len(vr) - 1 | |
fps = float(vr.get_avg_fps()) | |
pixel_values_list, num_patches_list = [], [] | |
transform = build_transform(input_size=input_size) | |
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB") | |
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(tile) for tile in img] | |
pixel_values = torch.stack(pixel_values) | |
num_patches_list.append(pixel_values.shape[0]) | |
pixel_values_list.append(pixel_values.to(torch.bfloat16)) | |
pixel_values = torch.cat(pixel_values_list) | |
return pixel_values, num_patches_list | |