Spaces:
Running
Running
| import cv2 | |
| import numpy as np | |
| import gradio as gr | |
| from mtcnn import MTCNN | |
| from tensorflow.keras.models import load_model | |
| from tensorflow.keras.applications.xception import preprocess_input as xcp_pre | |
| from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre | |
| from huggingface_hub import hf_hub_download | |
| # Download and load models | |
| xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5") | |
| eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5") | |
| xcp_model = load_model(xcp_path) | |
| eff_model = load_model(eff_path) | |
| # Load face detector | |
| detector = MTCNN() | |
| # Detection thresholds | |
| MIN_FACE_SIZE = 60 # Accept faces larger than 60×60 pixels | |
| MIN_CONFIDENCE = 0.94 # Accept only confident detections | |
| def predict(image): | |
| faces = detector.detect_faces(image) | |
| if not faces: | |
| return "No face detected", image | |
| output_image = image.copy() | |
| results = [] | |
| valid_faces = 0 | |
| for idx, face in enumerate(faces): | |
| conf = face.get("confidence", 0) | |
| x, y, w, h = face['box'] | |
| # Filter out unclear faces | |
| if w < MIN_FACE_SIZE or h < MIN_FACE_SIZE or conf < MIN_CONFIDENCE: | |
| continue | |
| img_h, img_w = image.shape[:2] | |
| margin = 0.2 | |
| x = max(0, int(x - w * margin)) | |
| y = max(0, int(y - h * margin)) | |
| x2 = min(img_w, x + int(w * (1 + 2 * margin))) | |
| y2 = min(img_h, y + int(h * (1 + 2 * margin))) | |
| face_img = image[y:y2, x:x2] | |
| # Resize and preprocess | |
| face_xcp = cv2.resize(face_img, (299, 299)) | |
| face_eff = cv2.resize(face_img, (224, 224)) | |
| xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...] | |
| eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...] | |
| # Predict | |
| pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0] | |
| pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0] | |
| avg = (pred_xcp + pred_eff) / 2 | |
| label = "Real" if avg > 0.41 else "Fake" | |
| color = (0, 255, 0) if label == "Real" else (0, 0, 255) | |
| # Draw on image | |
| cv2.rectangle(output_image, (x, y), (x2, y2), color, 2) | |
| cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10), | |
| cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) | |
| results.append(f"Face {idx+1}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})") | |
| valid_faces += 1 | |
| if valid_faces == 0: | |
| return "No clear or confident face detected", image | |
| return "\n".join(results), output_image | |
| # Interface | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="numpy", label="Upload Image"), | |
| outputs=[ | |
| gr.Textbox(label="Predictions"), | |
| gr.Image(type="numpy", label="Annotated Image"), | |
| ], | |
| title="Deepfake Detector (Multi-Face Ensemble)", | |
| description="Detects all visible faces in an image and classifies each as Real or Fake using Xception and EfficientNetB4 ensemble.", | |
| ) | |
| interface.launch() | |