Zeyadd-Mostaffa commited on
Commit
d350158
·
verified ·
1 Parent(s): da7f914

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -37
app.py CHANGED
@@ -7,74 +7,73 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
8
  from huggingface_hub import hf_hub_download
9
 
10
- # Download models from Hugging Face
11
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
12
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
13
  xcp_model = load_model(xcp_path)
14
  eff_model = load_model(eff_path)
15
 
16
- # Load MTCNN detector
17
  detector = MTCNN()
18
 
19
- # Parameters
20
- MIN_FACE_SIZE = 100 # Skip small distant faces
21
- MIN_CONFIDENCE = 0.97 # MTCNN face confidence
22
- AVG_THRESHOLD = 0.41 # Decision boundary
23
 
24
  def predict(image):
25
  faces = detector.detect_faces(image)
26
  if not faces:
27
  return "No face detected", image
28
 
29
- output = image.copy()
30
  results = []
 
31
 
32
  for idx, face in enumerate(faces):
33
- if face['confidence'] < MIN_CONFIDENCE:
34
- continue
35
-
36
  x, y, w, h = face['box']
37
- if w < MIN_FACE_SIZE or h < MIN_FACE_SIZE:
 
 
38
  continue
39
 
40
- # Expand face bounding box by margin
41
- margin = 0.2
42
  img_h, img_w = image.shape[:2]
 
43
  x = max(0, int(x - w * margin))
44
  y = max(0, int(y - h * margin))
45
- x2 = min(img_w, int(x + w * (1 + 2 * margin)))
46
- y2 = min(img_h, int(y + h * (1 + 2 * margin)))
47
 
48
- face_crop = image[y:y2, x:x2]
49
- if face_crop.size == 0:
50
- continue
 
 
 
 
 
 
 
 
 
51
 
52
- # Resize and preprocess for both models
53
- xcp_input = cv2.resize(face_crop, (299, 299)).astype(np.float32)
54
- eff_input = cv2.resize(face_crop, (224, 224)).astype(np.float32)
55
- xcp_tensor = xcp_pre(xcp_input)[np.newaxis, ...]
56
- eff_tensor = eff_pre(eff_input)[np.newaxis, ...]
57
-
58
- # Get predictions
59
- xcp_score = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
60
- eff_score = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
61
- avg_score = (xcp_score + eff_score) / 2
62
- label = "Real" if avg_score > AVG_THRESHOLD else "Fake"
63
  color = (0, 255, 0) if label == "Real" else (0, 0, 255)
64
 
65
- # Annotate image
66
- cv2.rectangle(output, (x, y), (x2, y2), color, 2)
67
- cv2.putText(output, f"{label} ({avg_score:.2f})", (x, y - 10),
68
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
69
 
70
- results.append(f"Face {idx+1}: {label} (Avg: {avg_score:.3f}, XCP: {xcp_score:.3f}, EFF: {eff_score:.3f})")
 
71
 
72
- if not results:
73
  return "No clear or confident face detected", image
74
 
75
- return "\n".join(results), output
76
 
77
- # Gradio UI
78
  interface = gr.Interface(
79
  fn=predict,
80
  inputs=gr.Image(type="numpy", label="Upload Image"),
@@ -83,7 +82,7 @@ interface = gr.Interface(
83
  gr.Image(type="numpy", label="Annotated Image"),
84
  ],
85
  title="Deepfake Detector (Multi-Face Ensemble)",
86
- description="Detects and classifies confident faces as Real or Fake using Xception + EfficientNetB4.",
87
  )
88
 
89
  interface.launch()
 
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
8
  from huggingface_hub import hf_hub_download
9
 
10
+ # Download and load models
11
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
12
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
13
  xcp_model = load_model(xcp_path)
14
  eff_model = load_model(eff_path)
15
 
16
+ # Load face detector
17
  detector = MTCNN()
18
 
19
+ # Detection thresholds
20
+ MIN_FACE_SIZE = 60 # Accept faces larger than 60×60 pixels
21
+ MIN_CONFIDENCE = 0.94 # Accept only confident detections
 
22
 
23
  def predict(image):
24
  faces = detector.detect_faces(image)
25
  if not faces:
26
  return "No face detected", image
27
 
28
+ output_image = image.copy()
29
  results = []
30
+ valid_faces = 0
31
 
32
  for idx, face in enumerate(faces):
33
+ conf = face.get("confidence", 0)
 
 
34
  x, y, w, h = face['box']
35
+
36
+ # Filter out unclear faces
37
+ if w < MIN_FACE_SIZE or h < MIN_FACE_SIZE or conf < MIN_CONFIDENCE:
38
  continue
39
 
 
 
40
  img_h, img_w = image.shape[:2]
41
+ margin = 0.2
42
  x = max(0, int(x - w * margin))
43
  y = max(0, int(y - h * margin))
44
+ x2 = min(img_w, x + int(w * (1 + 2 * margin)))
45
+ y2 = min(img_h, y + int(h * (1 + 2 * margin)))
46
 
47
+ face_img = image[y:y2, x:x2]
48
+
49
+ # Resize and preprocess
50
+ face_xcp = cv2.resize(face_img, (299, 299))
51
+ face_eff = cv2.resize(face_img, (224, 224))
52
+ xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
53
+ eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
54
+
55
+ # Predict
56
+ pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
57
+ pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
58
+ avg = (pred_xcp + pred_eff) / 2
59
 
60
+ label = "Real" if avg > 0.41 else "Fake"
 
 
 
 
 
 
 
 
 
 
61
  color = (0, 255, 0) if label == "Real" else (0, 0, 255)
62
 
63
+ # Draw on image
64
+ cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
65
+ cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
66
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
67
 
68
+ results.append(f"Face {idx+1}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
69
+ valid_faces += 1
70
 
71
+ if valid_faces == 0:
72
  return "No clear or confident face detected", image
73
 
74
+ return "\n".join(results), output_image
75
 
76
+ # Interface
77
  interface = gr.Interface(
78
  fn=predict,
79
  inputs=gr.Image(type="numpy", label="Upload Image"),
 
82
  gr.Image(type="numpy", label="Annotated Image"),
83
  ],
84
  title="Deepfake Detector (Multi-Face Ensemble)",
85
+ description="Detects all visible faces in an image and classifies each as Real or Fake using Xception and EfficientNetB4 ensemble.",
86
  )
87
 
88
  interface.launch()