Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,27 +7,26 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
|
7 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
|
|
|
10 |
# Load models
|
11 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
|
12 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
|
13 |
xcp_model = load_model(xcp_path)
|
14 |
eff_model = load_model(eff_path)
|
15 |
|
16 |
-
# Load MTCNN detector
|
17 |
-
detector = MTCNN()
|
18 |
-
|
19 |
-
# Filters
|
20 |
-
MIN_FACE_AREA = 6400 # 80x80 minimum face area
|
21 |
-
MIN_SHARPNESS = 20 # blur threshold
|
22 |
-
MIN_BRIGHTNESS = 30 # dark crop threshold
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
return cv2.Laplacian(gray, cv2.CV_64F).var() < MIN_SHARPNESS
|
27 |
|
28 |
-
def
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def predict(image):
|
33 |
faces = detector.detect_faces(image)
|
@@ -36,13 +35,11 @@ def predict(image):
|
|
36 |
|
37 |
output_image = image.copy()
|
38 |
results = []
|
39 |
-
face_count = 0
|
40 |
|
41 |
for idx, face in enumerate(faces):
|
42 |
x, y, w, h = face['box']
|
43 |
-
if w * h < MIN_FACE_AREA:
|
44 |
-
continue
|
45 |
|
|
|
46 |
margin = 0.2
|
47 |
img_h, img_w = image.shape[:2]
|
48 |
x = max(0, int(x - w * margin))
|
@@ -51,18 +48,16 @@ def predict(image):
|
|
51 |
h = int(h * (1 + 2 * margin))
|
52 |
x2 = min(img_w, x + w)
|
53 |
y2 = min(img_h, y + h)
|
54 |
-
face_img = image[y:y2, x:x2]
|
55 |
|
56 |
-
|
57 |
-
continue
|
58 |
-
if is_blurry(face_img) or is_dark(face_img):
|
59 |
-
continue
|
60 |
|
|
|
61 |
face_xcp = cv2.resize(face_img, (299, 299))
|
62 |
face_eff = cv2.resize(face_img, (224, 224))
|
63 |
xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
|
64 |
eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
|
65 |
|
|
|
66 |
pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
67 |
pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
68 |
avg = (pred_xcp + pred_eff) / 2
|
@@ -70,15 +65,12 @@ def predict(image):
|
|
70 |
label = "Real" if avg > 0.41 else "Fake"
|
71 |
color = (0, 255, 0) if label == "Real" else (0, 0, 255)
|
72 |
|
73 |
-
|
74 |
cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
|
75 |
cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
|
76 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
77 |
|
78 |
-
results.append(f"Face {
|
79 |
-
|
80 |
-
if not results:
|
81 |
-
return "No clear or confident face detected", output_image
|
82 |
|
83 |
return "\n".join(results), output_image
|
84 |
|
@@ -91,7 +83,7 @@ interface = gr.Interface(
|
|
91 |
gr.Image(type="numpy", label="Annotated Image"),
|
92 |
],
|
93 |
title="Deepfake Detector (Multi-Face Ensemble)",
|
94 |
-
description="Detects all
|
95 |
)
|
96 |
|
97 |
interface.launch()
|
|
|
7 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
|
10 |
+
|
11 |
# Load models
|
12 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
|
13 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
|
14 |
xcp_model = load_model(xcp_path)
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Load face detector
|
19 |
+
detector = MTCNN()
|
|
|
20 |
|
21 |
+
def expand_box(x, y, w, h, scale=1.5, img_shape=None):
|
22 |
+
"""Expand face bounding box with margin."""
|
23 |
+
cx, cy = x + w // 2, y + h // 2
|
24 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
25 |
+
x1 = max(0, cx - new_w // 2)
|
26 |
+
y1 = max(0, cy - new_h // 2)
|
27 |
+
x2 = min(img_shape[1], cx + new_w // 2)
|
28 |
+
y2 = min(img_shape[0], cy + new_h // 2)
|
29 |
+
return x1, y1, x2, y2
|
30 |
|
31 |
def predict(image):
|
32 |
faces = detector.detect_faces(image)
|
|
|
35 |
|
36 |
output_image = image.copy()
|
37 |
results = []
|
|
|
38 |
|
39 |
for idx, face in enumerate(faces):
|
40 |
x, y, w, h = face['box']
|
|
|
|
|
41 |
|
42 |
+
# Add 20% margin while staying inside bounds
|
43 |
margin = 0.2
|
44 |
img_h, img_w = image.shape[:2]
|
45 |
x = max(0, int(x - w * margin))
|
|
|
48 |
h = int(h * (1 + 2 * margin))
|
49 |
x2 = min(img_w, x + w)
|
50 |
y2 = min(img_h, y + h)
|
|
|
51 |
|
52 |
+
face_img = image[y:y2, x:x2]
|
|
|
|
|
|
|
53 |
|
54 |
+
# Resize + preprocess
|
55 |
face_xcp = cv2.resize(face_img, (299, 299))
|
56 |
face_eff = cv2.resize(face_img, (224, 224))
|
57 |
xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
|
58 |
eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
|
59 |
|
60 |
+
# Predictions
|
61 |
pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
62 |
pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
63 |
avg = (pred_xcp + pred_eff) / 2
|
|
|
65 |
label = "Real" if avg > 0.41 else "Fake"
|
66 |
color = (0, 255, 0) if label == "Real" else (0, 0, 255)
|
67 |
|
68 |
+
# Annotate image
|
69 |
cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
|
70 |
cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
|
71 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
72 |
|
73 |
+
results.append(f"Face {idx+1}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
|
|
|
|
|
|
|
74 |
|
75 |
return "\n".join(results), output_image
|
76 |
|
|
|
83 |
gr.Image(type="numpy", label="Annotated Image"),
|
84 |
],
|
85 |
title="Deepfake Detector (Multi-Face Ensemble)",
|
86 |
+
description="Detects all faces in an image and classifies each one as real or fake using Xception and EfficientNetB4 ensemble.",
|
87 |
)
|
88 |
|
89 |
interface.launch()
|