Zeyadd-Mostaffa commited on
Commit
6217681
·
verified ·
1 Parent(s): b12ebb8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -27
app.py CHANGED
@@ -7,27 +7,26 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
8
  from huggingface_hub import hf_hub_download
9
 
 
10
  # Load models
11
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
12
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
13
  xcp_model = load_model(xcp_path)
14
  eff_model = load_model(eff_path)
15
 
16
- # Load MTCNN detector
17
- detector = MTCNN()
18
-
19
- # Filters
20
- MIN_FACE_AREA = 6400 # 80x80 minimum face area
21
- MIN_SHARPNESS = 20 # blur threshold
22
- MIN_BRIGHTNESS = 30 # dark crop threshold
23
 
24
- def is_blurry(image):
25
- gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
26
- return cv2.Laplacian(gray, cv2.CV_64F).var() < MIN_SHARPNESS
27
 
28
- def is_dark(image):
29
- gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
30
- return np.mean(gray) < MIN_BRIGHTNESS
 
 
 
 
 
 
31
 
32
  def predict(image):
33
  faces = detector.detect_faces(image)
@@ -36,13 +35,11 @@ def predict(image):
36
 
37
  output_image = image.copy()
38
  results = []
39
- face_count = 0
40
 
41
  for idx, face in enumerate(faces):
42
  x, y, w, h = face['box']
43
- if w * h < MIN_FACE_AREA:
44
- continue
45
 
 
46
  margin = 0.2
47
  img_h, img_w = image.shape[:2]
48
  x = max(0, int(x - w * margin))
@@ -51,18 +48,16 @@ def predict(image):
51
  h = int(h * (1 + 2 * margin))
52
  x2 = min(img_w, x + w)
53
  y2 = min(img_h, y + h)
54
- face_img = image[y:y2, x:x2]
55
 
56
- if face_img.shape[0] < 40 or face_img.shape[1] < 40:
57
- continue
58
- if is_blurry(face_img) or is_dark(face_img):
59
- continue
60
 
 
61
  face_xcp = cv2.resize(face_img, (299, 299))
62
  face_eff = cv2.resize(face_img, (224, 224))
63
  xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
64
  eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
65
 
 
66
  pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
67
  pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
68
  avg = (pred_xcp + pred_eff) / 2
@@ -70,15 +65,12 @@ def predict(image):
70
  label = "Real" if avg > 0.41 else "Fake"
71
  color = (0, 255, 0) if label == "Real" else (0, 0, 255)
72
 
73
- face_count += 1
74
  cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
75
  cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
76
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
77
 
78
- results.append(f"Face {face_count}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
79
-
80
- if not results:
81
- return "No clear or confident face detected", output_image
82
 
83
  return "\n".join(results), output_image
84
 
@@ -91,7 +83,7 @@ interface = gr.Interface(
91
  gr.Image(type="numpy", label="Annotated Image"),
92
  ],
93
  title="Deepfake Detector (Multi-Face Ensemble)",
94
- description="Detects all confident faces and classifies each one as real or fake using Xception and EfficientNetB4 ensemble."
95
  )
96
 
97
  interface.launch()
 
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
8
  from huggingface_hub import hf_hub_download
9
 
10
+
11
  # Load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
 
 
 
 
 
 
 
17
 
18
+ # Load face detector
19
+ detector = MTCNN()
 
20
 
21
+ def expand_box(x, y, w, h, scale=1.5, img_shape=None):
22
+ """Expand face bounding box with margin."""
23
+ cx, cy = x + w // 2, y + h // 2
24
+ new_w, new_h = int(w * scale), int(h * scale)
25
+ x1 = max(0, cx - new_w // 2)
26
+ y1 = max(0, cy - new_h // 2)
27
+ x2 = min(img_shape[1], cx + new_w // 2)
28
+ y2 = min(img_shape[0], cy + new_h // 2)
29
+ return x1, y1, x2, y2
30
 
31
  def predict(image):
32
  faces = detector.detect_faces(image)
 
35
 
36
  output_image = image.copy()
37
  results = []
 
38
 
39
  for idx, face in enumerate(faces):
40
  x, y, w, h = face['box']
 
 
41
 
42
+ # Add 20% margin while staying inside bounds
43
  margin = 0.2
44
  img_h, img_w = image.shape[:2]
45
  x = max(0, int(x - w * margin))
 
48
  h = int(h * (1 + 2 * margin))
49
  x2 = min(img_w, x + w)
50
  y2 = min(img_h, y + h)
 
51
 
52
+ face_img = image[y:y2, x:x2]
 
 
 
53
 
54
+ # Resize + preprocess
55
  face_xcp = cv2.resize(face_img, (299, 299))
56
  face_eff = cv2.resize(face_img, (224, 224))
57
  xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
58
  eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
59
 
60
+ # Predictions
61
  pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
62
  pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
63
  avg = (pred_xcp + pred_eff) / 2
 
65
  label = "Real" if avg > 0.41 else "Fake"
66
  color = (0, 255, 0) if label == "Real" else (0, 0, 255)
67
 
68
+ # Annotate image
69
  cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
70
  cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
71
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
72
 
73
+ results.append(f"Face {idx+1}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
 
 
 
74
 
75
  return "\n".join(results), output_image
76
 
 
83
  gr.Image(type="numpy", label="Annotated Image"),
84
  ],
85
  title="Deepfake Detector (Multi-Face Ensemble)",
86
+ description="Detects all faces in an image and classifies each one as real or fake using Xception and EfficientNetB4 ensemble.",
87
  )
88
 
89
  interface.launch()