Zeyadd-Mostaffa commited on
Commit
b12ebb8
·
verified ·
1 Parent(s): d350158

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -23
app.py CHANGED
@@ -7,18 +7,27 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
8
  from huggingface_hub import hf_hub_download
9
 
10
- # Download and load models
11
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
12
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
13
  xcp_model = load_model(xcp_path)
14
  eff_model = load_model(eff_path)
15
 
16
- # Load face detector
17
  detector = MTCNN()
18
 
19
- # Detection thresholds
20
- MIN_FACE_SIZE = 60 # Accept faces larger than 60×60 pixels
21
- MIN_CONFIDENCE = 0.94 # Accept only confident detections
 
 
 
 
 
 
 
 
 
22
 
23
  def predict(image):
24
  faces = detector.detect_faces(image)
@@ -27,32 +36,33 @@ def predict(image):
27
 
28
  output_image = image.copy()
29
  results = []
30
- valid_faces = 0
31
 
32
  for idx, face in enumerate(faces):
33
- conf = face.get("confidence", 0)
34
  x, y, w, h = face['box']
35
-
36
- # Filter out unclear faces
37
- if w < MIN_FACE_SIZE or h < MIN_FACE_SIZE or conf < MIN_CONFIDENCE:
38
  continue
39
 
40
- img_h, img_w = image.shape[:2]
41
  margin = 0.2
 
42
  x = max(0, int(x - w * margin))
43
  y = max(0, int(y - h * margin))
44
- x2 = min(img_w, x + int(w * (1 + 2 * margin)))
45
- y2 = min(img_h, y + int(h * (1 + 2 * margin)))
46
-
 
47
  face_img = image[y:y2, x:x2]
48
 
49
- # Resize and preprocess
 
 
 
 
50
  face_xcp = cv2.resize(face_img, (299, 299))
51
  face_eff = cv2.resize(face_img, (224, 224))
52
  xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
53
  eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
54
 
55
- # Predict
56
  pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
57
  pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
58
  avg = (pred_xcp + pred_eff) / 2
@@ -60,20 +70,19 @@ def predict(image):
60
  label = "Real" if avg > 0.41 else "Fake"
61
  color = (0, 255, 0) if label == "Real" else (0, 0, 255)
62
 
63
- # Draw on image
64
  cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
65
  cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
66
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
67
 
68
- results.append(f"Face {idx+1}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
69
- valid_faces += 1
70
 
71
- if valid_faces == 0:
72
- return "No clear or confident face detected", image
73
 
74
  return "\n".join(results), output_image
75
 
76
- # Interface
77
  interface = gr.Interface(
78
  fn=predict,
79
  inputs=gr.Image(type="numpy", label="Upload Image"),
@@ -82,8 +91,9 @@ interface = gr.Interface(
82
  gr.Image(type="numpy", label="Annotated Image"),
83
  ],
84
  title="Deepfake Detector (Multi-Face Ensemble)",
85
- description="Detects all visible faces in an image and classifies each as Real or Fake using Xception and EfficientNetB4 ensemble.",
86
  )
87
 
88
  interface.launch()
89
 
 
 
7
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
8
  from huggingface_hub import hf_hub_download
9
 
10
+ # Load models
11
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
12
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
13
  xcp_model = load_model(xcp_path)
14
  eff_model = load_model(eff_path)
15
 
16
+ # Load MTCNN detector
17
  detector = MTCNN()
18
 
19
+ # Filters
20
+ MIN_FACE_AREA = 6400 # 80x80 minimum face area
21
+ MIN_SHARPNESS = 20 # blur threshold
22
+ MIN_BRIGHTNESS = 30 # dark crop threshold
23
+
24
+ def is_blurry(image):
25
+ gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
26
+ return cv2.Laplacian(gray, cv2.CV_64F).var() < MIN_SHARPNESS
27
+
28
+ def is_dark(image):
29
+ gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
30
+ return np.mean(gray) < MIN_BRIGHTNESS
31
 
32
  def predict(image):
33
  faces = detector.detect_faces(image)
 
36
 
37
  output_image = image.copy()
38
  results = []
39
+ face_count = 0
40
 
41
  for idx, face in enumerate(faces):
 
42
  x, y, w, h = face['box']
43
+ if w * h < MIN_FACE_AREA:
 
 
44
  continue
45
 
 
46
  margin = 0.2
47
+ img_h, img_w = image.shape[:2]
48
  x = max(0, int(x - w * margin))
49
  y = max(0, int(y - h * margin))
50
+ w = int(w * (1 + 2 * margin))
51
+ h = int(h * (1 + 2 * margin))
52
+ x2 = min(img_w, x + w)
53
+ y2 = min(img_h, y + h)
54
  face_img = image[y:y2, x:x2]
55
 
56
+ if face_img.shape[0] < 40 or face_img.shape[1] < 40:
57
+ continue
58
+ if is_blurry(face_img) or is_dark(face_img):
59
+ continue
60
+
61
  face_xcp = cv2.resize(face_img, (299, 299))
62
  face_eff = cv2.resize(face_img, (224, 224))
63
  xcp_tensor = xcp_pre(face_xcp.astype(np.float32))[np.newaxis, ...]
64
  eff_tensor = eff_pre(face_eff.astype(np.float32))[np.newaxis, ...]
65
 
 
66
  pred_xcp = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
67
  pred_eff = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
68
  avg = (pred_xcp + pred_eff) / 2
 
70
  label = "Real" if avg > 0.41 else "Fake"
71
  color = (0, 255, 0) if label == "Real" else (0, 0, 255)
72
 
73
+ face_count += 1
74
  cv2.rectangle(output_image, (x, y), (x2, y2), color, 2)
75
  cv2.putText(output_image, f"{label} ({avg:.2f})", (x, y - 10),
76
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
77
 
78
+ results.append(f"Face {face_count}: {label} (Avg: {avg:.3f}, XCP: {pred_xcp:.3f}, EFF: {pred_eff:.3f})")
 
79
 
80
+ if not results:
81
+ return "No clear or confident face detected", output_image
82
 
83
  return "\n".join(results), output_image
84
 
85
+ # Gradio Interface
86
  interface = gr.Interface(
87
  fn=predict,
88
  inputs=gr.Image(type="numpy", label="Upload Image"),
 
91
  gr.Image(type="numpy", label="Annotated Image"),
92
  ],
93
  title="Deepfake Detector (Multi-Face Ensemble)",
94
+ description="Detects all confident faces and classifies each one as real or fake using Xception and EfficientNetB4 ensemble."
95
  )
96
 
97
  interface.launch()
98
 
99
+