Chatbot / app.py
TKM03's picture
Update app.py
7517204 verified
raw
history blame
6.55 kB
import gradio as gr
import logging
import os
from huggingface_hub import InferenceClient
from datetime import datetime
import uuid
import json
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("chatbot_logs.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger("CompanyChatbot")
# Environment variables (for production use)
HF_MODEL = os.environ.get("HF_MODEL", "HuggingFaceH4/zephyr-7b-beta")
HF_API_TOKEN = os.environ.get("HF_API_TOKEN", None) # Set your API token as env variable
COMPANY_NAME = os.environ.get("COMPANY_NAME", "Your Company")
DEFAULT_SYSTEM_PROMPT = os.environ.get("DEFAULT_SYSTEM_PROMPT",
f"You are {COMPANY_NAME}'s professional AI assistant. Be helpful, accurate, and concise.")
# Initialize the client
try:
client = InferenceClient(HF_MODEL, token=HF_API_TOKEN)
logger.info(f"Successfully initialized InferenceClient with model: {HF_MODEL}")
except Exception as e:
logger.error(f"Failed to initialize InferenceClient: {str(e)}")
raise RuntimeError(f"Failed to initialize the model. Please check your configuration: {str(e)}")
# Conversation tracking
def save_conversation(user_id, conversation):
filename = f"conversations/{user_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, 'w') as f:
json.dump(conversation, f)
logger.info(f"Saved conversation for user {user_id}")
# Main chat function
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
user_id
):
if not message.strip():
return "I'm sorry, I didn't receive any input. How can I help you today?"
# Log the incoming request
logger.info(f"User {user_id} sent message - Length: {len(message)}")
try:
messages = [{"role": "system", "content": system_message}]
# Build conversation history
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
# Generate response
full_response = ""
start_time = datetime.now()
for message_chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message_chunk.choices[0].delta.content
full_response += token if token else ""
yield full_response
# Log completion
time_taken = (datetime.now() - start_time).total_seconds()
logger.info(f"Response generated for user {user_id} in {time_taken:.2f}s - Length: {len(full_response)}")
# Save conversation for audit/analytics
conversation_data = {
"timestamp": datetime.now().isoformat(),
"user_id": user_id,
"messages": messages,
"response": full_response,
"parameters": {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p
},
"time_taken": time_taken
}
save_conversation(user_id, conversation_data)
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
logger.error(f"Error generating response for user {user_id}: {str(e)}")
return error_msg
# Authentication function (replace with your actual auth system)
def authenticate(username, password):
# In production, this should check against your company's auth system
valid_credentials = {"admin": "admin123", "user": "user123"} # Example only
if username in valid_credentials and valid_credentials[username] == password:
return True, str(uuid.uuid4()) # Generate user session ID
return False, None
# Login interface
def login(username, password):
success, user_id = authenticate(username, password)
if success:
return gr.update(visible=False), gr.update(visible=True), user_id
else:
return gr.update(visible=True), gr.update(visible=False), None
# Main application
with gr.Blocks(css="styles.css", title=f"{COMPANY_NAME} AI Assistant") as demo:
user_id = gr.State(None)
with gr.Row():
gr.Markdown(f"# {COMPANY_NAME} AI Assistant")
with gr.Group(visible=True) as login_group:
gr.Markdown("### Please log in to continue")
username = gr.Textbox(label="Username")
password = gr.Textbox(label="Password", type="password")
login_button = gr.Button("Login")
with gr.Group(visible=False) as chat_group:
chatbot = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Response Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature (Creativity)"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Variation)"),
user_id
],
analytics_enabled=True,
title=None,
)
login_button.click(
login,
inputs=[username, password],
outputs=[login_group, chat_group, user_id]
)
# For CSS styling
css = """
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: #f9f9f9;
}
.gradio-container {
max-width: 1200px !important;
margin: auto;
}
.footer {
text-align: center;
margin-top: 20px;
color: #666;
font-size: 0.8em;
}
"""
with open("styles.css", "w") as f:
f.write(css)
if __name__ == "__main__":
# Check if we're running in production
if os.environ.get("PRODUCTION", "false").lower() == "true":
demo.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
share=False,
show_error=False,
auth=None, # We handle auth in the app
)
else:
# Development mode
demo.launch(share=True)