File size: 4,580 Bytes
94fd8fc
 
 
 
 
 
3c45742
94fd8fc
3c45742
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
94fd8fc
3c45742
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
94fd8fc
3c45742
94fd8fc
3c45742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
94fd8fc
3c45742
94fd8fc
 
 
 
 
3c45742
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss
import re
import gradio as gr

# [Previous functions remain exactly the same - preprocess_text, query_qa_system, initialize_qa_system, etc.]

# Custom CSS for professional styling
custom_css = """
.gradio-container {
    max-width: 1200px !important;
    margin: auto !important;
    padding: 20px !important;
    background-color: #f8f9fa !important;
}

.main-header {
    text-align: center;
    margin-bottom: 2rem;
    padding: 2rem;
    background: linear-gradient(135deg, #1a365d 0%, #2c5282 100%);
    color: white;
    border-radius: 10px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

.main-header h1 {
    font-size: 2.5rem;
    margin-bottom: 1rem;
    font-weight: 600;
}

.main-header p {
    font-size: 1.1rem;
    opacity: 0.9;
}

.upload-section {
    background: white;
    padding: 2rem;
    border-radius: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
    margin-bottom: 2rem;
}

.qa-section {
    background: white;
    padding: 2rem;
    border-radius: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}

.status-box {
    margin-top: 1rem;
    padding: 1rem;
    border-radius: 8px;
    background: #f0f9ff;
    border: 1px solid #bae6fd;
}

.custom-button {
    background: #2563eb !important;
    color: white !important;
    border-radius: 8px !important;
    padding: 0.75rem 1.5rem !important;
    font-weight: 500 !important;
}

.custom-button:hover {
    background: #1d4ed8 !important;
}

.answer-box {
    background: #f8fafc !important;
    border: 1px solid #e2e8f0 !important;
    border-radius: 8px !important;
    font-family: 'Source Code Pro', monospace !important;
}

.section-title {
    color: #1e293b;
    font-size: 1.25rem;
    font-weight: 600;
    margin-bottom: 1rem;
}

/* Responsive design */
@media (max-width: 768px) {
    .gradio-container {
        padding: 10px !important;
    }
    
    .main-header {
        padding: 1.5rem;
    }
    
    .main-header h1 {
        font-size: 2rem;
    }
}
"""

# Create the enhanced Gradio interface
with gr.Blocks(title="Interview Q&A Assistant", css=custom_css) as demo:
    # Header Section
    with gr.Row(elem_classes=["main-header"]):
        with gr.Column():
            gr.Markdown("# Interview Q&A Assistant")
            gr.Markdown("Your AI-powered interview preparation companion. Upload your interview questions PDF and get instant, relevant answers to your queries.")
    
    # Upload Section
    with gr.Row():
        with gr.Column(elem_classes=["upload-section"]):
            gr.Markdown("### 📁 Document Upload", elem_classes=["section-title"])
            with gr.Row():
                pdf_upload = gr.File(
                    label="Upload your interview questions PDF",
                    file_types=[".pdf"],
                    elem_classes=["file-upload"]
                )
            with gr.Row():
                upload_button = gr.Button("Initialize Q&A System", elem_classes=["custom-button"])
            with gr.Row():
                status_text = gr.Textbox(
                    label="System Status",
                    value="Upload a PDF to begin",
                    elem_classes=["status-box"]
                )
    
    # Q&A Section
    with gr.Row():
        with gr.Column(elem_classes=["qa-section"]):
            gr.Markdown("### 💡 Ask Questions", elem_classes=["section-title"])
            with gr.Row():
                question_input = gr.Textbox(
                    label="What would you like to know about the interview?",
                    placeholder="e.g., What are the common behavioral questions?",
                    lines=2
                )
            with gr.Row():
                submit_button = gr.Button("Get Answer", elem_classes=["custom-button"])
            with gr.Row():
                answer_output = gr.Textbox(
                    label="Answer",
                    lines=10,
                    elem_classes=["answer-box"]
                )
    
    # Information Section
    with gr.Row():
        gr.Markdown("""
        <div style="text-align: center; padding: 2rem; color: #64748b; font-size: 0.9rem;">
            Made with ❤️ for interview preparation success
        </div>
        """)
    
    # Set up events (keeping the same functionality)
    upload_button.click(upload_file, inputs=pdf_upload, outputs=status_text)
    submit_button.click(answer_question, inputs=question_input, outputs=answer_output)

# Launch the app
if __name__ == "__main__":
    demo.launch(share=True)