File size: 9,470 Bytes
94fd8fc
 
 
 
 
da3e470
3991753
 
94fd8fc
da3e470
 
3991753
da3e470
 
 
 
 
3991753
dfc5079
 
3991753
 
 
 
 
 
 
da3e470
 
a22d089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3e470
 
 
 
 
 
 
 
 
 
 
 
3991753
 
 
da3e470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
94fd8fc
3c45742
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
94fd8fc
3c45742
26862d5
3c45742
 
 
26862d5
 
94fd8fc
3c45742
94fd8fc
3c45742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
26862d5
3c45742
 
 
 
 
 
 
 
 
 
 
 
 
94fd8fc
3c45742
 
 
 
 
94fd8fc
da3e470
94fd8fc
 
 
 
 
3991753
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss
import re
import gradio as gr
import PyPDF2
import tempfile
import os

def extract_text_from_pdf(pdf_file):
    """
    Extract text from a PDF file for Hugging Face Spaces
    """
    if pdf_file is None:
        return "Please upload a PDF file."
    
    pdf_text = ""
    try:
        # In Hugging Face Spaces, pdf_file is already a file path
        with open(pdf_file.name, 'rb') as f:
            pdf_reader = PyPDF2.PdfReader(f)
            for page_num in range(len(pdf_reader.pages)):
                page = pdf_reader.pages[page_num]
                pdf_text += page.extract_text() + "\n"
        
    except Exception as e:
        return f"Error processing PDF: {str(e)}"
    
    return pdf_text

def preprocess_text(text):
    """
    Preprocess the text into structured question-answer pairs
    """
    # Split text into sections by questions
    sections = []
    current_section = []
    
    for line in text.split('\n'):
        line = line.strip()
        if line.startswith('Question'):
            if current_section:
                sections.append(' '.join(current_section))
            current_section = [line]
        elif line:
            current_section.append(line)
    
    if current_section:
        sections.append(' '.join(current_section))
    
    # Create a structured format
    structured_sections = []
    for section in sections:
        # Remove page numbers and other irrelevant text
        section = re.sub(r'\d+\s*$', '', section)
        section = re.sub(r'TRAPS:|BEST ANSWER:|PASSABLE ANSWER:', ' ', section)
        structured_sections.append(section.strip())
    
    return structured_sections

def create_qa_system(pdf_text, model_name="all-MiniLM-L6-v2"):
    """
    Create and return a QA system with the processed text
    """
    # Process text into structured sections
    text_chunks = preprocess_text(pdf_text)
    
    # Create embeddings
    model = SentenceTransformer(model_name)
    embeddings = model.encode(text_chunks)
    
    # Create FAISS index with cosine similarity
    dimension = embeddings.shape[1]
    
    # Normalize vectors for cosine similarity
    faiss.normalize_L2(embeddings)
    index = faiss.IndexFlatIP(dimension)  # Inner product for cosine similarity
    index.add(embeddings)
    
    return model, index, text_chunks

def query_qa_system(question, model, index, text_chunks, similarity_threshold=0.3):
    """
    Query the QA system with improved matching
    """
    # Encode and normalize the question
    question_embedding = model.encode([question])
    faiss.normalize_L2(question_embedding)
    
    # Search for the most similar chunks
    k = 1  # Get only the best match
    similarities, indices = index.search(question_embedding, k)
    
    best_idx = indices[0][0]
    similarity_score = similarities[0][0]  # Cosine similarity score
    
    if similarity_score >= similarity_threshold:
        matched_text = text_chunks[best_idx]
        # Extract just the question number for reference
        question_num = re.search(r'Question \d+:', matched_text)
        question_num = question_num.group(0) if question_num else "Matching section"
        
        return {
            'question': question_num,
            'full_text': matched_text,
            'confidence': float(similarity_score),
            'found_answer': True
        }
    else:
        return {
            'question': None,
            'full_text': "I couldn't find a sufficiently relevant answer to your question in the provided document.",
            'confidence': float(similarity_score),
            'found_answer': False
        }

# Global variables to store model, index, and text chunks
global_model = None
global_index = None
global_text_chunks = None

def upload_file(file):
    global global_model, global_index, global_text_chunks
    if file is not None:
        try:
            # Extract text from PDF
            pdf_text = extract_text_from_pdf(file)
            
            if isinstance(pdf_text, str) and pdf_text.startswith("Error"):
                return pdf_text
            
            # Initialize QA system
            global_model, global_index, global_text_chunks = create_qa_system(pdf_text)
            
            return "βœ… Document processed successfully! You can now ask questions."
        except Exception as e:
            return f"❌ Error processing document: {str(e)}"
    else:
        return "❌ Please upload a PDF file."

def answer_question(question):
    global global_model, global_index, global_text_chunks
    
    if global_model is None or global_index is None or global_text_chunks is None:
        return "Please upload and process a document first."
    
    if not question.strip():
        return "Please enter a question."
    
    result = query_qa_system(question, global_model, global_index, global_text_chunks)
    
    if result['found_answer']:
        response = f"Found matching section (confidence: {result['confidence']:.2f}):\n\n{result['full_text']}"
    else:
        response = f"{result['full_text']}\nBest match confidence: {result['confidence']:.2f}"
    
    return response

# Custom CSS for professional styling
custom_css = """
.gradio-container {
    max-width: 1200px !important;
    margin: auto !important;
    padding: 20px !important;
    background-color: #f8f9fa !important;
}

.main-header {
    text-align: center;
    margin-bottom: 2rem;
    padding: 2rem;
    background: linear-gradient(135deg, #1a365d 0%, #2c5282 100%);
    color: white;
    border-radius: 10px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

.main-header h1 {
    font-size: 2.5rem;
    margin-bottom: 1rem;
    font-weight: 600;
}

.main-header p {
    font-size: 1.1rem;
    opacity: 0.9;
}

.upload-section {
    background: white;
    padding: 2rem;
    border-radius: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
    margin-bottom: 2rem;
}

.qa-section {
    background: white;
    padding: 2rem;
    border-radius: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}

.status-box {
    margin-top: 1rem;
    padding: 1rem;
    border-radius: 8px;
    background: #f0f9ff;
    border: 1px solid #bae6fd;
}

.custom-button {
    background: #2563eb !important;
    color: white !important;
    border-radius: 8px !important;
    padding: 0.75rem 1.5rem !important;
    font-weight: 500 !important;
}

.custom-button:hover {
    background: #1d4ed8 !important;
}

.answer-box {
    background: #f8fafc !important;
    border: 1px solid #e2e8f0 !important;
    border-radius: 8px !important;
    font-family: 'Source Code Pro', monospace !important;
}

.section-title {
    color: #1e293b;
    font-size: 1.25rem;
    font-weight: 600;
    margin-bottom: 1rem;
}

/* Responsive design */
@media (max-width: 768px) {
    .gradio-container {
        padding: 10px !important;
    }
    
    .main-header {
        padding: 1.5rem;
    }
    
    .main-header h1 {
        font-size: 2rem;
    }
}
"""

# Create the enhanced Gradio interface
with gr.Blocks(title="Q&A Assistant", css=custom_css) as demo:
    # Header Section
    with gr.Row(elem_classes=["main-header"]):
        with gr.Column():
            gr.Markdown("# Q&A Assistant")
            gr.Markdown("AI-powered interview preparation companion. Upload your PDF and get instant, relevant answers to your queries.")
    
    # Upload Section
    with gr.Row():
        with gr.Column(elem_classes=["upload-section"]):
            gr.Markdown("### πŸ“ Document Upload", elem_classes=["section-title"])
            with gr.Row():
                pdf_upload = gr.File(
                    label="Upload your interview questions PDF",
                    file_types=[".pdf"],
                    elem_classes=["file-upload"]
                )
            with gr.Row():
                upload_button = gr.Button("Initialize Q&A System", elem_classes=["custom-button"])
            with gr.Row():
                status_text = gr.Textbox(
                    label="System Status",
                    value="Upload a PDF to begin",
                    elem_classes=["status-box"]
                )
    
    # Q&A Section
    with gr.Row():
        with gr.Column(elem_classes=["qa-section"]):
            gr.Markdown("### πŸ’‘ Ask Questions", elem_classes=["section-title"])
            with gr.Row():
                question_input = gr.Textbox(
                    label="What would you like to know ?",
                    placeholder="e.g., What are the common behavioral questions?",
                    lines=2
                )
            with gr.Row():
                submit_button = gr.Button("Get Answer", elem_classes=["custom-button"])
            with gr.Row():
                answer_output = gr.Textbox(
                    label="Answer",
                    lines=10,
                    elem_classes=["answer-box"]
                )
    
    # Information Section
    with gr.Row():
        gr.Markdown("""
        <div style="text-align: center; padding: 2rem; color: #64748b; font-size: 0.9rem;">
            Made with ❀️ for interview preparation success
        </div>
        """)
    
    # Set up events
    upload_button.click(upload_file, inputs=pdf_upload, outputs=status_text)
    submit_button.click(answer_question, inputs=question_input, outputs=answer_output)

# Launch the app
if __name__ == "__main__":
    demo.launch()