Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
from sentence_transformers import SentenceTransformer
|
3 |
-
import faiss
|
4 |
-
import re
|
5 |
-
import gradio as gr
|
6 |
-
|
7 |
-
def preprocess_text(text):
|
8 |
-
"""
|
9 |
-
Preprocess the text into structured question-answer pairs
|
10 |
-
"""
|
11 |
-
# Split text into sections by questions
|
12 |
-
sections = []
|
13 |
-
current_section = []
|
14 |
-
|
15 |
-
for line in text.split('\n'):
|
16 |
-
line = line.strip()
|
17 |
-
if line.startswith('Question'):
|
18 |
-
if current_section:
|
19 |
-
sections.append(' '.join(current_section))
|
20 |
-
current_section = [line]
|
21 |
-
elif line:
|
22 |
-
current_section.append(line)
|
23 |
-
|
24 |
-
if current_section:
|
25 |
-
sections.append(' '.join(current_section))
|
26 |
-
|
27 |
-
# Create a structured format
|
28 |
-
structured_sections = []
|
29 |
-
for section in sections:
|
30 |
-
# Remove page numbers and other irrelevant text
|
31 |
-
section = re.sub(r'\d+\s*$', '', section)
|
32 |
-
section = re.sub(r'TRAPS:|BEST ANSWER:|PASSABLE ANSWER:', ' ', section)
|
33 |
-
structured_sections.append(section.strip())
|
34 |
-
|
35 |
-
return structured_sections
|
36 |
-
|
37 |
-
def query_qa_system(question, model, index, text_chunks, similarity_threshold=0.4):
|
38 |
-
"""
|
39 |
-
Query the QA system with improved matching
|
40 |
-
"""
|
41 |
-
# Encode and normalize the question
|
42 |
-
question_embedding = model.encode([question])
|
43 |
-
faiss.normalize_L2(question_embedding)
|
44 |
-
|
45 |
-
# Search for the most similar chunks
|
46 |
-
k = 1 # Get only the best match
|
47 |
-
similarities, indices = index.search(question_embedding, k)
|
48 |
-
|
49 |
-
best_idx = indices[0][0]
|
50 |
-
similarity_score = similarities[0][0] # Cosine similarity score
|
51 |
-
|
52 |
-
if similarity_score >= similarity_threshold:
|
53 |
-
matched_text = text_chunks[best_idx]
|
54 |
-
# Extract just the question number for reference
|
55 |
-
question_num = re.search(r'Question \d+:', matched_text)
|
56 |
-
question_num = question_num.group(0) if question_num else "Matching section"
|
57 |
-
|
58 |
-
return {
|
59 |
-
'question': question_num,
|
60 |
-
'full_text': matched_text,
|
61 |
-
'confidence': float(similarity_score),
|
62 |
-
'found_answer': True
|
63 |
-
}
|
64 |
-
else:
|
65 |
-
return {
|
66 |
-
'question': None,
|
67 |
-
'full_text': "I couldn't find a sufficiently relevant answer to your question in the provided document.",
|
68 |
-
'confidence': float(similarity_score),
|
69 |
-
'found_answer': False
|
70 |
-
}
|
71 |
-
|
72 |
-
# Function to handle PDF file upload and initialization
|
73 |
-
def initialize_qa_system(pdf_file):
|
74 |
-
# Read the uploaded PDF
|
75 |
-
try:
|
76 |
-
from PyPDF2 import PdfReader
|
77 |
-
pdf_reader = PdfReader(pdf_file.name)
|
78 |
-
pdf_text = ""
|
79 |
-
for page in pdf_reader.pages:
|
80 |
-
text = page.extract_text()
|
81 |
-
if text:
|
82 |
-
pdf_text += text + "\n"
|
83 |
-
|
84 |
-
# Process text and create embeddings
|
85 |
-
text_chunks = preprocess_text(pdf_text)
|
86 |
-
model = SentenceTransformer("all-MiniLM-L6-v2")
|
87 |
-
embeddings = model.encode(text_chunks)
|
88 |
-
|
89 |
-
# Create index
|
90 |
-
dimension = embeddings.shape[1]
|
91 |
-
faiss.normalize_L2(embeddings)
|
92 |
-
index = faiss.IndexFlatIP(dimension)
|
93 |
-
index.add(embeddings)
|
94 |
-
|
95 |
-
return {
|
96 |
-
'model': model,
|
97 |
-
'index': index,
|
98 |
-
'text_chunks': text_chunks,
|
99 |
-
'status': f"System initialized with {len(text_chunks)} text chunks from your PDF!"
|
100 |
-
}
|
101 |
-
except Exception as e:
|
102 |
-
return {
|
103 |
-
'model': None,
|
104 |
-
'index': None,
|
105 |
-
'text_chunks': None,
|
106 |
-
'status': f"Error: {str(e)}"
|
107 |
-
}
|
108 |
-
|
109 |
-
# Global variables to store our QA system components
|
110 |
-
qa_system = {'model': None, 'index': None, 'text_chunks': None}
|
111 |
-
|
112 |
-
# Function to handle file upload
|
113 |
-
def upload_file(pdf_file):
|
114 |
-
global qa_system
|
115 |
-
result = initialize_qa_system(pdf_file)
|
116 |
-
qa_system = result
|
117 |
-
return result['status']
|
118 |
-
|
119 |
-
# Function to handle questions
|
120 |
-
def answer_question(question):
|
121 |
-
global qa_system
|
122 |
-
|
123 |
-
if not qa_system['model'] or not qa_system['index'] or not qa_system['text_chunks']:
|
124 |
-
return "Please upload a PDF file first."
|
125 |
-
|
126 |
-
result = query_qa_system(question, qa_system['model'], qa_system['index'], qa_system['text_chunks'])
|
127 |
-
answer_start = result['full_text'].find('Answer:') + len('Answer:')
|
128 |
-
answer = result['full_text'][answer_start:].strip()
|
129 |
-
|
130 |
-
|
131 |
-
if result['found_answer']:
|
132 |
-
return f"Match (confidence: {result['confidence']:.2f}):\n\n{answer}"
|
133 |
-
else:
|
134 |
-
return f"{answer}\nBest match confidence: {result['confidence']:.2f}"
|
135 |
-
|
136 |
-
# Create the Gradio interface
|
137 |
-
with gr.Blocks(title="Interview Q&A Assistant") as demo:
|
138 |
-
gr.Markdown("# Interview Q&A Assistant")
|
139 |
-
gr.Markdown("Upload your interview questions PDF and ask questions to get the most relevant sections.")
|
140 |
-
|
141 |
-
with gr.Row():
|
142 |
-
with gr.Column():
|
143 |
-
pdf_upload = gr.File(label="Upload PDF File")
|
144 |
-
upload_button = gr.Button("Initialize Q&A System")
|
145 |
-
status_text = gr.Textbox(label="Status", value="Upload a PDF to begin")
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
question_input = gr.Textbox(label="Ask a question about interview preparation")
|
150 |
-
submit_button = gr.Button("Get Answer")
|
151 |
-
|
152 |
-
with gr.Row():
|
153 |
-
answer_output = gr.Textbox(label="Answer", lines=10)
|
154 |
-
|
155 |
-
# Set up events
|
156 |
-
upload_button.click(upload_file, inputs=pdf_upload, outputs=status_text)
|
157 |
-
submit_button.click(answer_question, inputs=question_input, outputs=answer_output)
|
158 |
-
|
159 |
-
# Launch the app
|
160 |
-
if __name__ == "__main__":
|
161 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|