Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,13 @@ import gradio as gr
|
|
4 |
from transformers import pipeline
|
5 |
from collections import Counter
|
6 |
|
7 |
-
# Load
|
8 |
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER", aggregation_strategy="simple")
|
9 |
|
|
|
|
|
|
|
10 |
def clean_resume_text(text):
|
11 |
-
"""Clean resume text by removing unwanted characters and formatting."""
|
12 |
text = re.sub(r'http\S+', ' ', text)
|
13 |
text = re.sub(r'#\S+', '', text)
|
14 |
text = re.sub(r'@\S+', ' ', text)
|
@@ -17,7 +19,6 @@ def clean_resume_text(text):
|
|
17 |
return re.sub(r'\s+', ' ', text).strip()
|
18 |
|
19 |
def extract_resume_text(file):
|
20 |
-
"""Extract raw text from uploaded PDF file."""
|
21 |
try:
|
22 |
reader = PyPDF2.PdfReader(file)
|
23 |
text = ""
|
@@ -31,8 +32,7 @@ def extract_resume_text(file):
|
|
31 |
except Exception as e:
|
32 |
return None, f"Error reading PDF: {str(e)}"
|
33 |
|
34 |
-
def
|
35 |
-
"""Classify resume based on dominant entity types."""
|
36 |
orgs = [e['word'] for e in entities if e['entity_group'] == 'ORG']
|
37 |
locs = [e['word'] for e in entities if e['entity_group'] == 'LOC']
|
38 |
jobs = [e['word'] for e in entities if e['entity_group'] == 'MISC']
|
@@ -44,45 +44,65 @@ def classify_resume(entities):
|
|
44 |
return {
|
45 |
"Main_Organization": dominant_org[0][0] if dominant_org else "Unknown",
|
46 |
"Main_Location": dominant_loc[0][0] if dominant_loc else "Unknown",
|
47 |
-
"Possible_Job/Field": dominant_job[0][0] if dominant_job else "General"
|
48 |
}
|
49 |
|
50 |
-
def
|
51 |
-
|
52 |
-
summary = {}
|
53 |
-
|
54 |
for file in files:
|
55 |
file_name = file.name.split("/")[-1]
|
56 |
resume_text, error = extract_resume_text(file)
|
57 |
|
58 |
if error:
|
59 |
-
|
60 |
continue
|
61 |
|
62 |
cleaned_text = clean_resume_text(resume_text)
|
63 |
entities = ner_pipeline(cleaned_text)
|
|
|
64 |
|
65 |
-
|
66 |
"Persons": list({e["word"] for e in entities if e["entity_group"] == "PER"}),
|
67 |
"Organizations": list({e["word"] for e in entities if e["entity_group"] == "ORG"}),
|
68 |
"Locations": list({e["word"] for e in entities if e["entity_group"] == "LOC"}),
|
69 |
"Other": list({e["word"] for e in entities if e["entity_group"] not in ["PER", "ORG", "LOC"]}),
|
70 |
"Cleaned_Text": cleaned_text,
|
71 |
-
"Classification":
|
72 |
}
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
# Gradio UI
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
-
|
|
|
4 |
from transformers import pipeline
|
5 |
from collections import Counter
|
6 |
|
7 |
+
# Load NER pipeline
|
8 |
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER", aggregation_strategy="simple")
|
9 |
|
10 |
+
# Load text classification model (replace with a job-role classifier if available)
|
11 |
+
text_classifier = pipeline("text-classification", model="MoritzLaurer/bert-multilingual-passage-reranking-msmarco")
|
12 |
+
|
13 |
def clean_resume_text(text):
|
|
|
14 |
text = re.sub(r'http\S+', ' ', text)
|
15 |
text = re.sub(r'#\S+', '', text)
|
16 |
text = re.sub(r'@\S+', ' ', text)
|
|
|
19 |
return re.sub(r'\s+', ' ', text).strip()
|
20 |
|
21 |
def extract_resume_text(file):
|
|
|
22 |
try:
|
23 |
reader = PyPDF2.PdfReader(file)
|
24 |
text = ""
|
|
|
32 |
except Exception as e:
|
33 |
return None, f"Error reading PDF: {str(e)}"
|
34 |
|
35 |
+
def classify_resume_ner(entities):
|
|
|
36 |
orgs = [e['word'] for e in entities if e['entity_group'] == 'ORG']
|
37 |
locs = [e['word'] for e in entities if e['entity_group'] == 'LOC']
|
38 |
jobs = [e['word'] for e in entities if e['entity_group'] == 'MISC']
|
|
|
44 |
return {
|
45 |
"Main_Organization": dominant_org[0][0] if dominant_org else "Unknown",
|
46 |
"Main_Location": dominant_loc[0][0] if dominant_loc else "Unknown",
|
47 |
+
"Possible_Job/Field (NER)": dominant_job[0][0] if dominant_job else "General"
|
48 |
}
|
49 |
|
50 |
+
def process_resumes(files):
|
51 |
+
all_results = {}
|
|
|
|
|
52 |
for file in files:
|
53 |
file_name = file.name.split("/")[-1]
|
54 |
resume_text, error = extract_resume_text(file)
|
55 |
|
56 |
if error:
|
57 |
+
all_results[file_name] = {"error": error}
|
58 |
continue
|
59 |
|
60 |
cleaned_text = clean_resume_text(resume_text)
|
61 |
entities = ner_pipeline(cleaned_text)
|
62 |
+
classification = classify_resume_ner(entities)
|
63 |
|
64 |
+
all_results[file_name] = {
|
65 |
"Persons": list({e["word"] for e in entities if e["entity_group"] == "PER"}),
|
66 |
"Organizations": list({e["word"] for e in entities if e["entity_group"] == "ORG"}),
|
67 |
"Locations": list({e["word"] for e in entities if e["entity_group"] == "LOC"}),
|
68 |
"Other": list({e["word"] for e in entities if e["entity_group"] not in ["PER", "ORG", "LOC"]}),
|
69 |
"Cleaned_Text": cleaned_text,
|
70 |
+
"Classification (NER)": classification
|
71 |
}
|
72 |
+
return all_results
|
73 |
|
74 |
+
def classify_resumes_with_model(files):
|
75 |
+
predictions = {}
|
76 |
+
for file in files:
|
77 |
+
file_name = file.name.split("/")[-1]
|
78 |
+
resume_text, error = extract_resume_text(file)
|
79 |
+
if error:
|
80 |
+
predictions[file_name] = {"error": error}
|
81 |
+
continue
|
82 |
+
cleaned_text = clean_resume_text(resume_text)
|
83 |
+
result = text_classifier(cleaned_text[:512]) # Truncate long resumes
|
84 |
+
predictions[file_name] = {
|
85 |
+
"Predicted Label (HuggingFace Classifier)": result[0]['label'],
|
86 |
+
"Confidence": round(result[0]['score'], 4)
|
87 |
+
}
|
88 |
+
return predictions
|
89 |
|
90 |
# Gradio UI
|
91 |
+
with gr.Blocks(title="Multi-Resume Entity & Job Classifier") as demo:
|
92 |
+
gr.Markdown("## π Multi-Resume Entity Extractor & Classifier\nUpload multiple PDF resumes below. This tool extracts text, identifies key entities, and classifies job field using a Hugging Face model.")
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
file_input = gr.File(file_types=[".pdf"], label="Upload Resume PDFs", file_count="multiple")
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
extract_button = gr.Button("π Extract & Analyze Entities")
|
99 |
+
classify_button = gr.Button("π§ Predict Job Role with Classifier")
|
100 |
+
|
101 |
+
output_entities = gr.JSON(label="Entity Extraction & NER Classification")
|
102 |
+
output_class = gr.JSON(label="Predicted Job Classification (Model)")
|
103 |
+
|
104 |
+
extract_button.click(fn=process_resumes, inputs=[file_input], outputs=[output_entities])
|
105 |
+
classify_button.click(fn=classify_resumes_with_model, inputs=[file_input], outputs=[output_class])
|
106 |
|
107 |
if __name__ == "__main__":
|
108 |
+
demo.launch()
|