ResumeMatching / app.py
TKM03's picture
Update app.py
46c5a58 verified
import gradio as gr
from transformers import AutoModel, AutoTokenizer
from peft import PeftModel
import torch
import torch.nn.functional as F
# Load models
base_model = AutoModel.from_pretrained("BAAI/bge-large-en-v1.5")
model = PeftModel.from_pretrained(base_model, "shashu2325/resume-job-matcher-lora")
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-large-en-v1.5")
def get_match_score(resume_text, job_text):
resume_inputs = tokenizer(resume_text, return_tensors="pt", max_length=512, padding="max_length", truncation=True)
job_inputs = tokenizer(job_text, return_tensors="pt", max_length=512, padding="max_length", truncation=True)
with torch.no_grad():
resume_outputs = model(**resume_inputs)
job_outputs = model(**job_inputs)
resume_emb = resume_outputs.last_hidden_state.mean(dim=1)
job_emb = job_outputs.last_hidden_state.mean(dim=1)
resume_emb = F.normalize(resume_emb, p=2, dim=1)
job_emb = F.normalize(job_emb, p=2, dim=1)
similarity = torch.sum(resume_emb * job_emb, dim=1)
score = torch.sigmoid(similarity).item()
return f"Match Score: {score*100:.2f}%"
gr.Interface(
fn=get_match_score,
inputs=[
gr.Textbox(label="Resume Text", lines=12, placeholder="Paste resume here..."),
gr.Textbox(label="Job Description", lines=12, placeholder="Paste job description here...")
],
outputs="text",
title="Resume-Job Matcher",
description="Upload resume and job description to get a match score using LoRA fine-tuned BGE model."
).launch()