Spaces:
Running
Running
File size: 13,673 Bytes
40d676f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import gradio as gr
# from dotenv import load_dotenv
import os
from huggingface_hub import hf_hub_download
import pandas as pd
import sqlite3
# load_dotenv()
DB_DATASET_ID = os.getenv("DB_DATASET_ID")
DB_NAME = os.getenv("DB_NAME")
cache_path = hf_hub_download(repo_id=DB_DATASET_ID, repo_type='dataset', filename=DB_NAME, token=os.getenv("HF_TOKEN"))
# Model name mappings and metadata
closed_source = [
'ElevenLabs',
'Play.HT 2.0',
'Play.HT 3.0 Mini',
'PlayDialog',
'Papla P1',
'Hume Octave'
]
# Model name mapping, can include models that users cannot vote on
model_names = {
'styletts2': 'StyleTTS 2',
'tacotron': 'Tacotron',
'tacotronph': 'Tacotron Phoneme',
'tacotrondca': 'Tacotron DCA',
'speedyspeech': 'Speedy Speech',
'overflow': 'Overflow TTS',
'anonymoussparkle': 'Anonymous Sparkle',
'vits': 'VITS',
'vitsneon': 'VITS Neon',
'neuralhmm': 'Neural HMM',
'glow': 'Glow TTS',
'fastpitch': 'FastPitch',
'jenny': 'Jenny',
'tortoise': 'Tortoise TTS',
'xtts2': 'Coqui XTTSv2',
'xtts': 'Coqui XTTS',
'openvoice': 'MyShell OpenVoice',
'elevenlabs': 'ElevenLabs',
'openai': 'OpenAI',
'hierspeech': 'HierSpeech++',
'pheme': 'PolyAI Pheme',
'speecht5': 'SpeechT5',
'metavoice': 'MetaVoice-1B',
}
model_links = {
'ElevenLabs': 'https://elevenlabs.io/',
'Play.HT 2.0': 'https://play.ht/',
'Play.HT 3.0 Mini': 'https://play.ht/',
'XTTSv2': 'https://huggingface.co/coqui/XTTS-v2',
'MeloTTS': 'https://github.com/myshell-ai/MeloTTS',
'StyleTTS 2': 'https://github.com/yl4579/StyleTTS2',
'Parler TTS Large': 'https://github.com/huggingface/parler-tts',
'Parler TTS': 'https://github.com/huggingface/parler-tts',
'Fish Speech v1.5': 'https://github.com/fishaudio/fish-speech',
'Fish Speech v1.4': 'https://github.com/fishaudio/fish-speech',
'GPT-SoVITS': 'https://github.com/RVC-Boss/GPT-SoVITS',
'WhisperSpeech': 'https://github.com/WhisperSpeech/WhisperSpeech',
'VoiceCraft 2.0': 'https://github.com/jasonppy/VoiceCraft',
'PlayDialog': 'https://play.ht/',
'Kokoro v0.19': 'https://huggingface.co/hexgrad/Kokoro-82M',
'Kokoro v1.0': 'https://huggingface.co/hexgrad/Kokoro-82M',
'CosyVoice 2.0': 'https://github.com/FunAudioLLM/CosyVoice',
'MetaVoice': 'https://github.com/metavoiceio/metavoice-src',
'OpenVoice': 'https://github.com/myshell-ai/OpenVoice',
'OpenVoice V2': 'https://github.com/myshell-ai/OpenVoice',
'Pheme': 'https://github.com/PolyAI-LDN/pheme',
'Vokan TTS': 'https://huggingface.co/ShoukanLabs/Vokan',
'Papla P1': 'https://papla.media',
'Hume Octave': 'https://www.hume.ai'
}
def get_db():
conn = sqlite3.connect(cache_path)
return conn
def get_leaderboard(reveal_prelim=False, hide_battle_votes=False, sort_by_elo=True, hide_proprietary=False):
conn = get_db()
cursor = conn.cursor()
if hide_battle_votes:
sql = '''
SELECT m.name,
SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = 1 THEN 1 ELSE 0 END) as upvote,
SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = -1 THEN 1 ELSE 0 END) as downvote
FROM model m
LEFT JOIN vote v ON m.name = v.model
GROUP BY m.name
'''
else:
sql = '''
SELECT name,
SUM(CASE WHEN vote = 1 THEN 1 ELSE 0 END) as upvote,
SUM(CASE WHEN vote = -1 THEN 1 ELSE 0 END) as downvote
FROM model
LEFT JOIN vote ON model.name = vote.model
GROUP BY name
'''
cursor.execute(sql)
data = cursor.fetchall()
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
df['name'] = df['name'].replace(model_names).replace('Anonymous Sparkle', 'Fish Speech v1.5')
# Calculate total votes and win rate
df['votes'] = df['upvote'] + df['downvote']
df['win_rate'] = (df['upvote'] / df['votes'] * 100).round(1)
# Remove models with no votes
df = df[df['votes'] > 0]
# Filter out rows with insufficient votes if not revealing preliminary results
if not reveal_prelim:
df = df[df['votes'] > 500]
## Calculate ELO SCORE (kept as secondary metric)
df['elo'] = 1200
for i in range(len(df)):
for j in range(len(df)):
if i != j:
try:
expected_a = 1 / (1 + 10 ** ((df['elo'].iloc[j] - df['elo'].iloc[i]) / 400))
expected_b = 1 / (1 + 10 ** ((df['elo'].iloc[i] - df['elo'].iloc[j]) / 400))
actual_a = df['upvote'].iloc[i] / df['votes'].iloc[i] if df['votes'].iloc[i] > 0 else 0.5
actual_b = df['upvote'].iloc[j] / df['votes'].iloc[j] if df['votes'].iloc[j] > 0 else 0.5
df.iloc[i, df.columns.get_loc('elo')] += 32 * (actual_a - expected_a)
df.iloc[j, df.columns.get_loc('elo')] += 32 * (actual_b - expected_b)
except Exception as e:
print(f"Error in ELO calculation for rows {i} and {j}: {str(e)}")
continue
df['elo'] = round(df['elo'])
# Sort based on user preference
sort_column = 'elo' if sort_by_elo else 'win_rate'
df = df.sort_values(by=sort_column, ascending=False)
df['order'] = ['#' + str(i + 1) for i in range(len(df))]
# Select and order columns for display
df = df[['order', 'name', 'win_rate', 'votes', 'elo']]
# Remove proprietary models if filter is enabled
if hide_proprietary:
df = df[~df['name'].isin(closed_source)]
# Convert DataFrame to markdown table with CSS styling
markdown_table = """
<style>
/* Reset any Gradio table styles */
.leaderboard-table,
.leaderboard-table th,
.leaderboard-table td {
border: none !important;
border-collapse: separate !important;
border-spacing: 0 !important;
}
.leaderboard-container {
background: var(--background-fill-primary);
border: 1px solid var(--border-color-primary);
border-radius: 12px;
padding: 4px;
margin: 10px 0;
width: 100%;
overflow-x: auto; /* Enable horizontal scroll */
}
.leaderboard-scroll {
max-height: 600px;
overflow-y: auto;
border-radius: 8px;
}
.leaderboard-table {
width: 100%;
border-spacing: 0;
border-collapse: separate;
font-size: 15px;
line-height: 1.5;
table-layout: auto; /* Allow flexible column widths */
}
.leaderboard-table th {
background: var(--background-fill-secondary);
color: var(--body-text-color);
font-weight: 600;
text-align: left;
padding: 12px 16px;
position: sticky;
top: 0;
z-index: 1;
}
.leaderboard-table th:after {
content: '';
position: absolute;
left: 0;
bottom: 0;
width: 100%;
border-bottom: 1px solid var(--border-color-primary);
}
.leaderboard-table td {
padding: 12px 16px;
color: var(--body-text-color);
}
.leaderboard-table tr td {
border-bottom: 1px solid var(--border-color-primary);
}
.leaderboard-table tr:last-child td {
border-bottom: none;
}
.leaderboard-table tr:hover td {
background: var(--background-fill-secondary);
}
/* Column-specific styles */
.leaderboard-table .col-rank {
width: 70px;
min-width: 70px; /* Prevent rank from shrinking */
}
.leaderboard-table .col-model {
min-width: 200px; /* Minimum width before scrolling */
}
.leaderboard-table .col-winrate {
width: 100px;
min-width: 100px; /* Prevent win rate from shrinking */
}
.leaderboard-table .col-votes {
width: 100px;
min-width: 100px; /* Prevent votes from shrinking */
}
.leaderboard-table .col-arena {
width: 100px;
min-width: 100px; /* Prevent arena score from shrinking */
}
.win-rate {
display: inline-block;
font-weight: 600;
padding: 4px 8px;
border-radius: 6px;
min-width: 65px;
text-align: center;
}
.win-rate-excellent {
background-color: var(--color-accent);
color: var(--color-accent-foreground);
}
.win-rate-good {
background-color: var(--color-accent-soft);
color: var(--body-text-color);
}
.win-rate-average {
background-color: var(--background-fill-secondary);
color: var(--body-text-color);
border: 1px solid var(--border-color-primary);
}
.win-rate-below {
background-color: var(--error-background-fill);
color: var(--body-text-color);
}
.model-link {
color: var(--body-text-color) !important;
text-decoration: none !important;
border-bottom: 2px dashed rgba(128, 128, 128, 0.3);
}
.model-link:hover {
color: var(--color-accent) !important;
border-bottom-color: var(--color-accent) !important;
}
.proprietary-badge {
display: inline-block;
font-size: 12px;
padding: 2px 6px;
border-radius: 4px;
background-color: var(--background-fill-secondary);
color: var(--body-text-color);
margin-left: 6px;
border: 1px solid var(--border-color-primary);
}
/* New Arena V2 Pointer */
.arena-v2-pointer {
display: block;
margin: 20px auto;
padding: 20px;
text-align: center;
border-radius: 12px;
font-size: 20px;
font-weight: bold;
cursor: pointer;
transition: all 0.3s ease;
position: relative;
overflow: hidden;
text-decoration: none !important;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
max-width: 800px;
background: linear-gradient(135deg, #FF7B00, #FF5500);
color: white !important;
border: none;
}
/* Dark mode adjustments */
@media (prefers-color-scheme: dark) {
.arena-v2-pointer {
box-shadow: 0 4px 20px rgba(255, 123, 0, 0.3);
}
}
.arena-v2-pointer:hover {
transform: translateY(-5px);
box-shadow: 0 7px 25px rgba(255, 123, 0, 0.4);
filter: brightness(1.05);
color: white !important;
text-decoration: none !important;
}
.arena-v2-pointer::after {
content: "→";
font-size: 24px;
margin-left: 10px;
display: inline-block;
transition: transform 0.3s ease;
}
.arena-v2-pointer:hover::after {
transform: translateX(5px);
}
</style>
<a href="https://huggingface.co/spaces/TTS-AGI/TTS-Arena-V2" class="arena-v2-pointer" target="_blank">
Visit the new TTS Arena V2 to vote on the latest models!
</a>
<div class="leaderboard-container">
<div class="leaderboard-scroll">
<table class="leaderboard-table">
<thead>
<tr>
<th class="col-rank">Rank</th>
<th class="col-model">Model</th>
<th class="col-winrate">Win Rate</th>
<th class="col-votes">Votes</th>
""" + ("""<th class="col-arena">Arena Score</th>""" if sort_by_elo else "") + """
</tr>
</thead>
<tbody>
"""
def get_win_rate_class(win_rate):
if win_rate >= 60:
return "win-rate-excellent"
elif win_rate >= 55:
return "win-rate-good"
elif win_rate >= 45:
return "win-rate-average"
else:
return "win-rate-below"
for _, row in df.iterrows():
win_rate_class = get_win_rate_class(row['win_rate'])
win_rate_html = f'<span class="win-rate {win_rate_class}">{row["win_rate"]}%</span>'
# Add link to model name if available and proprietary badge if closed source
model_name = row['name']
original_model_name = model_name
if model_name in model_links:
model_name = f'<a href="{model_links[model_name]}" target="_blank" class="model-link">{model_name}</a>'
if original_model_name in closed_source:
model_name += '<span class="proprietary-badge">Proprietary</span>'
markdown_table += f'''<tr>
<td class="col-rank">{row['order']}</td>
<td class="col-model">{model_name}</td>
<td class="col-winrate">{win_rate_html}</td>
<td class="col-votes">{row['votes']:,}</td>''' + (
f'''<td class="col-arena">{int(row['elo'])}</td>''' if sort_by_elo else ""
) + "</tr>\n"
markdown_table += "</tbody></table></div></div>"
return markdown_table
ABOUT = """
# TTS Arena (Legacy)
This is the legacy read-only leaderboard for TTS Arena V1. No new votes are being accepted.
**Please visit the new [TTS Arena](https://huggingface.co/spaces/TTS-AGI/TTS-Arena-V2) to vote!**
"""
CITATION_TEXT = """@misc{tts-arena,
title = {Text to Speech Arena},
author = {mrfakename and Srivastav, Vaibhav and Fourrier, Clémentine and Pouget, Lucain and Lacombe, Yoach and main and Gandhi, Sanchit},
year = 2024,
publisher = {Hugging Face},
howpublished = "\\url{https://huggingface.co/spaces/TTS-AGI/TTS-Arena}"
}"""
FOOTER = f"""
If you reference the Arena in your work, please cite it as follows:
```bibtex
{CITATION_TEXT}
```
"""
with gr.Blocks() as demo:
gr.Markdown(ABOUT)
with gr.Row():
with gr.Column():
reveal_prelim = gr.Checkbox(label="Show preliminary results (< 500 votes)", value=False)
hide_battle_votes = gr.Checkbox(label="Exclude battle votes", value=False)
with gr.Column():
sort_by_elo = gr.Checkbox(label="Sort by Arena Score instead of Win Rate", value=True)
hide_proprietary = gr.Checkbox(label="Hide proprietary models", value=False)
leaderboard_html = gr.HTML(get_leaderboard())
# Update leaderboard when filters change
for control in [reveal_prelim, hide_battle_votes, sort_by_elo, hide_proprietary]:
control.change(
fn=get_leaderboard,
inputs=[reveal_prelim, hide_battle_votes, sort_by_elo, hide_proprietary],
outputs=leaderboard_html
)
gr.Markdown(FOOTER)
demo.launch() |