File size: 10,411 Bytes
1dedb52
 
27638f8
 
 
1dedb52
 
16d8300
1dedb52
27638f8
 
 
1dedb52
 
 
 
 
 
27638f8
1dedb52
27638f8
 
1dedb52
 
27638f8
 
 
 
1dedb52
27638f8
 
1dedb52
 
 
27638f8
 
ef09dad
27638f8
 
 
 
 
 
16d8300
1dedb52
 
16d8300
1dedb52
27638f8
1dedb52
27638f8
 
 
 
16d8300
27638f8
 
1dedb52
 
 
 
 
 
 
 
 
 
 
 
e3793a3
1dedb52
 
 
 
 
 
 
 
 
 
 
 
 
 
27638f8
 
1dedb52
 
 
16d8300
 
 
1dedb52
 
 
16d8300
1dedb52
 
 
 
16d8300
e3793a3
 
 
 
 
 
 
16d8300
1dedb52
e3793a3
 
 
 
 
 
 
 
 
 
 
 
1dedb52
16d8300
 
e3793a3
 
 
 
 
 
 
 
 
 
 
16d8300
 
1dedb52
 
e3793a3
 
1dedb52
 
 
e3793a3
1dedb52
 
16d8300
 
1dedb52
27638f8
 
 
1dedb52
 
 
 
 
 
 
 
 
 
 
 
 
e3793a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27638f8
 
1dedb52
 
 
 
 
 
 
 
 
 
 
 
e3793a3
1dedb52
 
27638f8
e3793a3
1dedb52
 
 
e3793a3
 
 
 
 
 
 
 
 
 
 
 
 
1dedb52
e3793a3
27638f8
 
 
 
 
 
 
 
 
1dedb52
 
e3793a3
1dedb52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27638f8
 
 
1dedb52
 
 
 
 
 
 
 
27638f8
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from __future__ import annotations

from pathlib import Path

import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from constants import Constants, model_type_emoji
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns

TITLE = """<h1 align="center" id="space-title">TabArena: Public leaderboard for Tabular methods</h1>"""

INTRODUCTION_TEXT = (
    "TabArena Leaderboard measures the performance of tabular models on a collection of tabular "
    "datasets manually curated. The datasets are collected to make sure they are tabular, with "
    "permissive license without ethical issues and so on, we refer to the paper for a full "
    "description of our approach."
)

ABOUT_TEXT = """
## How It Works.

To evaluate the leaderboard, follow install instructions in
`https://github.com/autogluon/tabrepo/tree/tabarena` and run
`https://github.com/autogluon/tabrepo/blob/tabarena/examples/tabarena/run_tabarena_eval.py`.


This will generate a leaderboard. You can add your own method and contact the authors if you want it to be added
to the leaderboard. We require method to have public code available to be considered in the leaderboard.
"""

CITATION_BUTTON_LABEL = (
    "If you use this leaderboard in your research please cite the following:"
)
CITATION_BUTTON_TEXT = r"""
@article{
TBA,
}
"""


def get_model_family(model_name: str) -> str:
    prefixes_mapping = {
        Constants.automl: ["AutoGluon"],
        Constants.neural_network: ["REALMLP", "TabM", "FASTAI", "MNCA", "NN_TORCH"],
        Constants.tree: ["GBM", "CAT", "EBM", "XGB", "XT", "RF"],
        Constants.foundational: ["TABDPT", "TABICL", "TABPFN"],
        Constants.baseline: ["KNN", "LR"],
    }

    for method_type, prefixes in prefixes_mapping.items():
        for prefix in prefixes:
            if prefix.lower() in model_name.lower():
                return method_type
    return Constants.other


def rename_map(model_name: str) -> str:
    rename_map = {
        "TABM": "TabM",
        "REALMLP": "RealMLP",
        "GBM": "LightGBM",
        "CAT": "CatBoost",
        "XGB": "XGBoost",
        "XT": "ExtraTrees",
        "RF": "RandomForest",
        "MNCA": "ModernNCA",
        "NN_TORCH": "TorchMLP",
        "FASTAI": "FastaiMLP",
        "TABPFNV2": "TabPFNv2",
        "EBM": "EBM",
        "TABDPT": "TabDPT",
        "TABICL": "TabICL",
        "KNN": "KNN",
        "LR": "Linear",
    }

    for prefix in rename_map:
        if prefix in model_name:
            return model_name.replace(prefix, rename_map[prefix])

    return model_name


def load_data(filename: str):
    df_leaderboard = pd.read_csv(Path(__file__).parent / "data" / f"{filename}.csv.zip")
    print(
        f"Loaded dataframe with {len(df_leaderboard)} rows and columns {df_leaderboard.columns}"
    )


    # add model family information

    df_leaderboard["Type"] = df_leaderboard.loc[:, "method"].apply(
        lambda s: model_type_emoji[get_model_family(s)]
    )
    df_leaderboard["TypeName"] = df_leaderboard.loc[:, "method"].apply(
        lambda s: get_model_family(s)
    )
    df_leaderboard["method"] = df_leaderboard["method"].apply(rename_map)

    # elo,elo+,elo-,mrr
    df_leaderboard["Elo 95% CI"] = (
        "+"
        + df_leaderboard["elo+"].round(0).astype(int).astype(str)
        + "/-"
        + df_leaderboard["elo-"].round(0).astype(int).astype(str)
    )
    # select only the columns we want to display
    df_leaderboard = df_leaderboard.loc[
        :,
        [
            "Type",
            "TypeName",
            "method",
            "elo",
            "Elo 95% CI",
            "rank",
            "normalized-error",
            "median_time_train_s_per_1K",
            "median_time_infer_s_per_1K",
        ],
    ]

    # round for better display
    df_leaderboard[["elo", "Elo 95% CI"]] = df_leaderboard[["elo", "Elo 95% CI"]].round(0)
    df_leaderboard[["median_time_train_s_per_1K", "rank"]] = df_leaderboard[
        ["median_time_train_s_per_1K", "rank"]
    ].round(2)
    df_leaderboard[["normalized-error", "median_time_infer_s_per_1K"]] = df_leaderboard[
        ["normalized-error", "median_time_infer_s_per_1K"]
    ].round(3)

    df_leaderboard = df_leaderboard.sort_values(by="elo", ascending=False)
    df_leaderboard = df_leaderboard.reset_index(drop=True)
    df_leaderboard = df_leaderboard.reset_index(names="#")

    # rename some columns
    return df_leaderboard.rename(
        columns={
            "median_time_train_s_per_1K": "Median Train Time (s/1K) [⬇️]",
            "median_time_infer_s_per_1K": "Median Predict Time (s/1K)) [⬇️]",
            "method": "Model",
            "elo": "Elo [⬆️]",
            "rank": "Rank [⬇️]",
            "normalized-error": "Normalized Error [⬇️]",
        }
    )

    # TODO show ELO +/- sem
    # TODO: rename and re-order columns


def make_leaderboard(df_leaderboard: pd.DataFrame) -> Leaderboard:
    df_leaderboard["TypeFiler"] = df_leaderboard["TypeName"].apply(
        lambda m: f"{m} {model_type_emoji[m]}"
    )
    # De-selects but does not filter...
    # default = df_leaderboard["TypeFiler"].unique().tolist()
    # default = [(s, s) for s in default if "AutoML" not in s]

    df_leaderboard["Only Default"] = df_leaderboard["Model"].str.endswith("(default)")
    df_leaderboard["Only Tuned"] = df_leaderboard["Model"].str.endswith("(tuned)")
    df_leaderboard["Only Tuned + Ensemble"] = df_leaderboard["Model"].str.endswith(
        "(tuned + ensemble)"
    ) | df_leaderboard["Model"].str.endswith("(4h)")

    # Add Imputed count postfix
    mask = df_leaderboard["Model"].str.startswith("TabPFNv2")
    df_leaderboard.loc[mask, "Model"] = (
        df_leaderboard.loc[mask, "Model"] + " [35.29% IMPUTED]"
    )
    mask = df_leaderboard["Model"].str.startswith("TabICL")
    df_leaderboard.loc[mask, "Model"] = (
        df_leaderboard.loc[mask, "Model"] + " [29.41% IMPUTED]"
    )

    df_leaderboard["Imputed"] = df_leaderboard["Model"].str.startswith(
        "TabPFNv2"
    ) | df_leaderboard["Model"].str.startswith("TabICL")
    df_leaderboard["Imputed"] = df_leaderboard["Imputed"].replace(
        {
            True: "Imputed",
            False: "Not Imputed",
        }
    )

    return Leaderboard(
        value=df_leaderboard,
        select_columns=SelectColumns(
            default_selection=list(df_leaderboard.columns),
            cant_deselect=["Type", "Model"],
            label="Select Columns to Display:",
        ),
        hide_columns=[
            "TypeName",
            "TypeFiler",
            "RefModel",
            "Only Default",
            "Only Tuned",
            "Only Tuned + Ensemble",
            "Imputed",
        ],
        search_columns=["Model", "Type"],
        filter_columns=[
            ColumnFilter("TypeFiler", type="checkboxgroup", label="Model Types."),
            ColumnFilter("Only Default", type="boolean", default=False),
            ColumnFilter("Only Tuned", type="boolean", default=False),
            ColumnFilter("Only Tuned + Ensemble", type="boolean", default=False),
            ColumnFilter(
                "Imputed",
                type="checkboxgroup",
                label="(Not) Imputed Models.",
                info="We impute the performance for models that cannot run on all"
                " datasets due to task or dataset size constraints (e.g. TabPFN,"
                " TabICL). We impute with the performance of a defaultRandomForest. "
                " We add a postfix [X% IMPUTED] to the model if any results were "
                "imputed. The X% shows the percentage of"
                " datasets that were imputed. In general, imputation negatively"
                " represents the model performance, punishing the model for not"
                " being able to run on all datasets.",
            ),
        ],
        bool_checkboxgroup_label="Custom Views (exclusive, only toggle one at a time):",
    )


def main():
    demo = gr.Blocks()
    with demo:
        gr.HTML(TITLE)
        gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

        with gr.Tabs(elem_classes="tab-buttons"):
            with gr.TabItem("πŸ… Overall", elem_id="llm-benchmark-tab-table", id=2):
                df_leaderboard = load_data("tabarena_leaderboard")
                make_leaderboard(df_leaderboard)

            # TODO: decide on which subsets we want to support here.
            # with gr.TabItem('πŸ… Regression', elem_id="llm-benchmark-tab-table", id=0):
            #     df_leaderboard = load_data("leaderboard-regression")
            #     leaderboard = make_leaderboard(df_leaderboard)
            #
            # with gr.TabItem('πŸ… Classification', elem_id="llm-benchmark-tab-table", id=1):
            #     df_leaderboard = load_data("leaderboard-classification")
            #     leaderboard = make_leaderboard(df_leaderboard)
            #
            # with gr.TabItem('πŸ… Classification', elem_id="llm-benchmark-tab-table", id=1):
            #     df_leaderboard = load_data("leaderboard-classification")
            #     leaderboard = make_leaderboard(df_leaderboard)
            #
            # with gr.TabItem('πŸ… TabPFNv2-Compatible', elem_id="llm-benchmark-tab-table", id=1):
            #     df_leaderboard = load_data("leaderboard-classification")
            #     leaderboard = make_leaderboard(df_leaderboard)
            #
            # with gr.TabItem('πŸ… TabICL-Compatible', elem_id="llm-benchmark-tab-table", id=1):
            #     df_leaderboard = load_data("leaderboard-classification")
            #     leaderboard = make_leaderboard(df_leaderboard)

            with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
                gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
        with gr.Row(), gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

    scheduler = BackgroundScheduler()
    # scheduler.add_job(restart_space, "interval", seconds=1800)
    scheduler.start()
    demo.queue(default_concurrency_limit=40).launch()
    demo.launch()


if __name__ == "__main__":
    main()