Spaces:
Running
Running
File size: 10,411 Bytes
1dedb52 27638f8 1dedb52 16d8300 1dedb52 27638f8 1dedb52 27638f8 1dedb52 27638f8 1dedb52 27638f8 1dedb52 27638f8 1dedb52 27638f8 ef09dad 27638f8 16d8300 1dedb52 16d8300 1dedb52 27638f8 1dedb52 27638f8 16d8300 27638f8 1dedb52 e3793a3 1dedb52 27638f8 1dedb52 16d8300 1dedb52 16d8300 1dedb52 16d8300 e3793a3 16d8300 1dedb52 e3793a3 1dedb52 16d8300 e3793a3 16d8300 1dedb52 e3793a3 1dedb52 e3793a3 1dedb52 16d8300 1dedb52 27638f8 1dedb52 e3793a3 27638f8 1dedb52 e3793a3 1dedb52 27638f8 e3793a3 1dedb52 e3793a3 1dedb52 e3793a3 27638f8 1dedb52 e3793a3 1dedb52 27638f8 1dedb52 27638f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from __future__ import annotations
from pathlib import Path
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from constants import Constants, model_type_emoji
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
TITLE = """<h1 align="center" id="space-title">TabArena: Public leaderboard for Tabular methods</h1>"""
INTRODUCTION_TEXT = (
"TabArena Leaderboard measures the performance of tabular models on a collection of tabular "
"datasets manually curated. The datasets are collected to make sure they are tabular, with "
"permissive license without ethical issues and so on, we refer to the paper for a full "
"description of our approach."
)
ABOUT_TEXT = """
## How It Works.
To evaluate the leaderboard, follow install instructions in
`https://github.com/autogluon/tabrepo/tree/tabarena` and run
`https://github.com/autogluon/tabrepo/blob/tabarena/examples/tabarena/run_tabarena_eval.py`.
This will generate a leaderboard. You can add your own method and contact the authors if you want it to be added
to the leaderboard. We require method to have public code available to be considered in the leaderboard.
"""
CITATION_BUTTON_LABEL = (
"If you use this leaderboard in your research please cite the following:"
)
CITATION_BUTTON_TEXT = r"""
@article{
TBA,
}
"""
def get_model_family(model_name: str) -> str:
prefixes_mapping = {
Constants.automl: ["AutoGluon"],
Constants.neural_network: ["REALMLP", "TabM", "FASTAI", "MNCA", "NN_TORCH"],
Constants.tree: ["GBM", "CAT", "EBM", "XGB", "XT", "RF"],
Constants.foundational: ["TABDPT", "TABICL", "TABPFN"],
Constants.baseline: ["KNN", "LR"],
}
for method_type, prefixes in prefixes_mapping.items():
for prefix in prefixes:
if prefix.lower() in model_name.lower():
return method_type
return Constants.other
def rename_map(model_name: str) -> str:
rename_map = {
"TABM": "TabM",
"REALMLP": "RealMLP",
"GBM": "LightGBM",
"CAT": "CatBoost",
"XGB": "XGBoost",
"XT": "ExtraTrees",
"RF": "RandomForest",
"MNCA": "ModernNCA",
"NN_TORCH": "TorchMLP",
"FASTAI": "FastaiMLP",
"TABPFNV2": "TabPFNv2",
"EBM": "EBM",
"TABDPT": "TabDPT",
"TABICL": "TabICL",
"KNN": "KNN",
"LR": "Linear",
}
for prefix in rename_map:
if prefix in model_name:
return model_name.replace(prefix, rename_map[prefix])
return model_name
def load_data(filename: str):
df_leaderboard = pd.read_csv(Path(__file__).parent / "data" / f"{filename}.csv.zip")
print(
f"Loaded dataframe with {len(df_leaderboard)} rows and columns {df_leaderboard.columns}"
)
# add model family information
df_leaderboard["Type"] = df_leaderboard.loc[:, "method"].apply(
lambda s: model_type_emoji[get_model_family(s)]
)
df_leaderboard["TypeName"] = df_leaderboard.loc[:, "method"].apply(
lambda s: get_model_family(s)
)
df_leaderboard["method"] = df_leaderboard["method"].apply(rename_map)
# elo,elo+,elo-,mrr
df_leaderboard["Elo 95% CI"] = (
"+"
+ df_leaderboard["elo+"].round(0).astype(int).astype(str)
+ "/-"
+ df_leaderboard["elo-"].round(0).astype(int).astype(str)
)
# select only the columns we want to display
df_leaderboard = df_leaderboard.loc[
:,
[
"Type",
"TypeName",
"method",
"elo",
"Elo 95% CI",
"rank",
"normalized-error",
"median_time_train_s_per_1K",
"median_time_infer_s_per_1K",
],
]
# round for better display
df_leaderboard[["elo", "Elo 95% CI"]] = df_leaderboard[["elo", "Elo 95% CI"]].round(0)
df_leaderboard[["median_time_train_s_per_1K", "rank"]] = df_leaderboard[
["median_time_train_s_per_1K", "rank"]
].round(2)
df_leaderboard[["normalized-error", "median_time_infer_s_per_1K"]] = df_leaderboard[
["normalized-error", "median_time_infer_s_per_1K"]
].round(3)
df_leaderboard = df_leaderboard.sort_values(by="elo", ascending=False)
df_leaderboard = df_leaderboard.reset_index(drop=True)
df_leaderboard = df_leaderboard.reset_index(names="#")
# rename some columns
return df_leaderboard.rename(
columns={
"median_time_train_s_per_1K": "Median Train Time (s/1K) [β¬οΈ]",
"median_time_infer_s_per_1K": "Median Predict Time (s/1K)) [β¬οΈ]",
"method": "Model",
"elo": "Elo [β¬οΈ]",
"rank": "Rank [β¬οΈ]",
"normalized-error": "Normalized Error [β¬οΈ]",
}
)
# TODO show ELO +/- sem
# TODO: rename and re-order columns
def make_leaderboard(df_leaderboard: pd.DataFrame) -> Leaderboard:
df_leaderboard["TypeFiler"] = df_leaderboard["TypeName"].apply(
lambda m: f"{m} {model_type_emoji[m]}"
)
# De-selects but does not filter...
# default = df_leaderboard["TypeFiler"].unique().tolist()
# default = [(s, s) for s in default if "AutoML" not in s]
df_leaderboard["Only Default"] = df_leaderboard["Model"].str.endswith("(default)")
df_leaderboard["Only Tuned"] = df_leaderboard["Model"].str.endswith("(tuned)")
df_leaderboard["Only Tuned + Ensemble"] = df_leaderboard["Model"].str.endswith(
"(tuned + ensemble)"
) | df_leaderboard["Model"].str.endswith("(4h)")
# Add Imputed count postfix
mask = df_leaderboard["Model"].str.startswith("TabPFNv2")
df_leaderboard.loc[mask, "Model"] = (
df_leaderboard.loc[mask, "Model"] + " [35.29% IMPUTED]"
)
mask = df_leaderboard["Model"].str.startswith("TabICL")
df_leaderboard.loc[mask, "Model"] = (
df_leaderboard.loc[mask, "Model"] + " [29.41% IMPUTED]"
)
df_leaderboard["Imputed"] = df_leaderboard["Model"].str.startswith(
"TabPFNv2"
) | df_leaderboard["Model"].str.startswith("TabICL")
df_leaderboard["Imputed"] = df_leaderboard["Imputed"].replace(
{
True: "Imputed",
False: "Not Imputed",
}
)
return Leaderboard(
value=df_leaderboard,
select_columns=SelectColumns(
default_selection=list(df_leaderboard.columns),
cant_deselect=["Type", "Model"],
label="Select Columns to Display:",
),
hide_columns=[
"TypeName",
"TypeFiler",
"RefModel",
"Only Default",
"Only Tuned",
"Only Tuned + Ensemble",
"Imputed",
],
search_columns=["Model", "Type"],
filter_columns=[
ColumnFilter("TypeFiler", type="checkboxgroup", label="Model Types."),
ColumnFilter("Only Default", type="boolean", default=False),
ColumnFilter("Only Tuned", type="boolean", default=False),
ColumnFilter("Only Tuned + Ensemble", type="boolean", default=False),
ColumnFilter(
"Imputed",
type="checkboxgroup",
label="(Not) Imputed Models.",
info="We impute the performance for models that cannot run on all"
" datasets due to task or dataset size constraints (e.g. TabPFN,"
" TabICL). We impute with the performance of a defaultRandomForest. "
" We add a postfix [X% IMPUTED] to the model if any results were "
"imputed. The X% shows the percentage of"
" datasets that were imputed. In general, imputation negatively"
" represents the model performance, punishing the model for not"
" being able to run on all datasets.",
),
],
bool_checkboxgroup_label="Custom Views (exclusive, only toggle one at a time):",
)
def main():
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("π
Overall", elem_id="llm-benchmark-tab-table", id=2):
df_leaderboard = load_data("tabarena_leaderboard")
make_leaderboard(df_leaderboard)
# TODO: decide on which subsets we want to support here.
# with gr.TabItem('π
Regression', elem_id="llm-benchmark-tab-table", id=0):
# df_leaderboard = load_data("leaderboard-regression")
# leaderboard = make_leaderboard(df_leaderboard)
#
# with gr.TabItem('π
Classification', elem_id="llm-benchmark-tab-table", id=1):
# df_leaderboard = load_data("leaderboard-classification")
# leaderboard = make_leaderboard(df_leaderboard)
#
# with gr.TabItem('π
Classification', elem_id="llm-benchmark-tab-table", id=1):
# df_leaderboard = load_data("leaderboard-classification")
# leaderboard = make_leaderboard(df_leaderboard)
#
# with gr.TabItem('π
TabPFNv2-Compatible', elem_id="llm-benchmark-tab-table", id=1):
# df_leaderboard = load_data("leaderboard-classification")
# leaderboard = make_leaderboard(df_leaderboard)
#
# with gr.TabItem('π
TabICL-Compatible', elem_id="llm-benchmark-tab-table", id=1):
# df_leaderboard = load_data("leaderboard-classification")
# leaderboard = make_leaderboard(df_leaderboard)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
with gr.Row(), gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
demo.launch()
if __name__ == "__main__":
main()
|