File size: 15,770 Bytes
3df16ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c98934
 
3df16ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import gradio as gr
import torch
import numpy as np
from transformers import (
    AutoModel, AutoProcessor, AutoFeatureExtractor, 
    AutoTokenizer, pipeline
)
import warnings
warnings.filterwarnings("ignore")

def test_single_model(model_name):
    """Test compatibility of a single model"""
    
    if not model_name.strip():
        return "Please enter a model name"
    
    result_text = f"πŸ” Testing Model: {model_name}\n"
    result_text += "=" * 60 + "\n\n"
    
    try:
        # 1. Load model
        result_text += "1️⃣ Loading Model...\n"
        model = AutoModel.from_pretrained(model_name)
        result_text += "   βœ… Model loaded successfully\n"
        result_text += f"   πŸ“Š Model type: {model.config.model_type}\n"
        result_text += f"   πŸ—οΈ Model class: {model.__class__.__name__}\n\n"
        
        # 2. Check model architecture
        result_text += "2️⃣ Checking Model Architecture...\n"
        if hasattr(model.config, 'hidden_size'):
            result_text += f"   πŸ”’ Hidden size: {model.config.hidden_size}\n"
        if hasattr(model.config, 'num_hidden_layers'):
            result_text += f"   πŸ“š Number of layers: {model.config.num_hidden_layers}\n"
        if hasattr(model.config, 'vocab_size'):
            result_text += f"   πŸ“– Vocabulary size: {model.config.vocab_size}\n"
        result_text += "\n"
        
        # 3. Try to load processor
        result_text += "3️⃣ Loading Processor...\n"
        processor = None
        supports_audio = False
        
        try:
            processor = AutoProcessor.from_pretrained(model_name)
            result_text += f"   βœ… Processor loaded successfully: {processor.__class__.__name__}\n"
            supports_audio = True
        except:
            try:
                processor = AutoFeatureExtractor.from_pretrained(model_name)
                result_text += f"   βœ… Feature extractor loaded successfully: {processor.__class__.__name__}\n"
                supports_audio = True
            except:
                result_text += "   ❌ Cannot load audio processor\n"
                supports_audio = False
        result_text += "\n"
        
        # 4. Check input requirements
        result_text += "4️⃣ Checking Input Requirements...\n"
        sampling_rate = 16000  # Default value
        if processor and supports_audio:
            if hasattr(processor, 'sampling_rate'):
                sampling_rate = processor.sampling_rate
                result_text += f"   🎡 Sampling rate: {sampling_rate} Hz\n"
            if hasattr(processor, 'feature_size'):
                result_text += f"   πŸ“ Feature dimension: {processor.feature_size}\n"
            if hasattr(processor, 'return_attention_mask'):
                result_text += f"   🎭 Supports attention mask: {processor.return_attention_mask}\n"
        result_text += "\n"
        
        # 5. Test inference
        result_text += "5️⃣ Testing Inference...\n"
        if supports_audio:
            try:
                # Create dummy audio data (2 seconds)
                dummy_audio = np.random.randn(sampling_rate * 2).astype(np.float32)
                
                # Process audio
                inputs = processor(dummy_audio, sampling_rate=sampling_rate, return_tensors="pt")
                
                # Model inference
                with torch.no_grad():
                    outputs = model(**inputs)
                
                # Check output
                if hasattr(outputs, 'last_hidden_state'):
                    shape = outputs.last_hidden_state.shape
                    result_text += f"   βœ… Inference successful! Hidden state shape: {shape}\n"
                elif hasattr(outputs, 'logits'):
                    shape = outputs.logits.shape
                    result_text += f"   βœ… Inference successful! Logits shape: {shape}\n"
                else:
                    result_text += f"   βœ… Inference successful! Output type: {type(outputs)}\n"
                    
            except Exception as e:
                result_text += f"   ❌ Inference failed: {str(e)}\n"
        else:
            result_text += "   ⚠️ Audio input not supported, skipping inference test\n"
        result_text += "\n"
        
        # 6. Multilingual support check
        result_text += "6️⃣ Multilingual Support Check...\n"
        multilingual = False
        
        if hasattr(model.config, 'vocab_size') and model.config.vocab_size > 50000:
            result_text += f"   βœ… Likely supports multiple languages (large vocabulary: {model.config.vocab_size})\n"
            multilingual = True
        elif any(keyword in model_name.lower() for keyword in ['xlsr', 'multilingual', 'cross-lingual']):
            result_text += "   βœ… Supports multiple languages based on model name\n"
            multilingual = True
        else:
            result_text += "   ❓ Multilingual support unclear\n"
        result_text += "\n"
        
        # 7. Depression detection suitability scoring
        result_text += "7️⃣ Depression Detection Suitability Assessment...\n"
        score = 0
        max_score = 15
        
        # Most important: Specifically for depression/mental health detection (6 points)
        depression_keywords = ['depression', 'mental-health', 'psychological', 'mood', 'phq']
        emotion_keywords = ['emotion', 'sentiment', 'affective', 'feeling']
        
        if any(keyword in model_name.lower() for keyword in depression_keywords):
            score += 6
            result_text += "   🎯 Specifically for depression/mental health detection (+6 points)\n"
        elif any(keyword in model_name.lower() for keyword in emotion_keywords):
            score += 3
            result_text += "   😊 For emotion recognition, potentially applicable (+3 points)\n"
        
        # Basic requirement: Audio input support (2 points)
        if supports_audio:
            score += 2
            result_text += "   🎡 Supports audio input (+2 points)\n"
        else:
            result_text += "   ❌ Does not support audio input (0 points)\n"
        
        # Multilingual support (2 points)
        if multilingual:
            score += 2
            result_text += "   🌍 Supports multiple languages (+2 points)\n"
        
        # Architecture suitability (2 points)
        if model.config.model_type in ['wav2vec2', 'hubert', 'wavlm']:
            score += 2
            result_text += "   πŸ—οΈ Excellent speech representation learning architecture (+2 points)\n"
        elif model.config.model_type == 'whisper':
            score += 1
            result_text += "   ⚠️ Whisper architecture needs modification for classification (+1 point)\n"
        
        # Check if configured for classification
        if hasattr(model.config, 'num_labels'):
            if model.config.num_labels == 2:
                score += 1
                result_text += f"   βœ… Binary classification task configuration (likely depression detection) (+1 point)\n"
            else:
                score += 0.5
                result_text += f"   ⚠️ Multi-class task ({model.config.num_labels} classes) (+0.5 points)\n"
        
        # Check for training dataset clues
        daic_keywords = ['daic', 'wizard-of-oz', 'depression-detection', 'clinical']
        if any(keyword in model_name.lower() for keyword in daic_keywords):
            score += 2
            result_text += "   πŸ“Š Possibly trained on clinical depression datasets (+2 points)\n"
        
        result_text += f"\n🎯 Depression Detection Suitability Score: {score}/{max_score}\n"
        
        # 8. Recommendations
        result_text += "\n8️⃣ Usage Recommendations...\n"
        if score >= 12:
            result_text += "   🌟 Highly recommended! Specifically for depression detection, very suitable\n"
        elif score >= 8:
            result_text += "   πŸ‘ Recommended, may need some fine-tuning\n"
        elif score >= 5:
            result_text += "   ⚠️ Use with caution, may need significant modification\n"
        else:
            result_text += "   ❌ Not recommended, suggest finding specialized depression detection models\n"
        
        # 9. Further inspection suggestions
        result_text += "\n9️⃣ Further Inspection Suggestions...\n"
        result_text += "   πŸ” Check model card for training data description\n"
        result_text += "   πŸ“Š Check if DAIC-WOZ or other depression datasets are mentioned\n"
        result_text += "   πŸ“ Check papers or documentation for task description\n"
        result_text += "   πŸ§ͺ Test with small samples to see if model output matches depression detection expectations\n"
        
        return result_text
        
    except Exception as e:
        error_msg = f"❌ Model test failed: {str(e)}\n"
        error_msg += "\nPossible causes:\n"
        error_msg += "β€’ Incorrect model name\n"
        error_msg += "β€’ Model requires special permissions\n"
        error_msg += "β€’ Network connection issues\n"
        error_msg += "β€’ Model architecture incompatibility\n"
        return error_msg

def test_recommended_models():
    """Test recommended model list"""
    
    recommended_models = [
        "facebook/wav2vec2-large-xlsr-53",
        "microsoft/wavlm-large",
        "harshit345/xlsr-wav2vec-speech-emotion-recognition",
        "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim",
        "speechbrain/emotion-recognition-wav2vec2-IEMOCAP"
    ]
    
    result_text = "πŸ” Batch Testing Recommended Models\n"
    result_text += "=" * 60 + "\n\n"
    
    results = []
    
    for i, model_name in enumerate(recommended_models, 1):
        result_text += f"πŸ“Š Testing {i}/{len(recommended_models)}: {model_name}\n"
        result_text += "-" * 50 + "\n"
        
        try:
            # Simplified quick test
            model = AutoModel.from_pretrained(model_name)
            
            # Check audio support
            supports_audio = False
            try:
                processor = AutoProcessor.from_pretrained(model_name)
                supports_audio = True
            except:
                try:
                    processor = AutoFeatureExtractor.from_pretrained(model_name)
                    supports_audio = True
                except:
                    pass
            
            # Check multilingual
            multilingual = False
            if hasattr(model.config, 'vocab_size') and model.config.vocab_size > 50000:
                multilingual = True
            elif any(keyword in model_name.lower() for keyword in ['xlsr', 'multilingual']):
                multilingual = True
            
            # Calculate simplified score
            score = 0
            if supports_audio:
                score += 3
            if multilingual:
                score += 2
            if model.config.model_type in ['wav2vec2', 'hubert', 'wavlm']:
                score += 3
            
            results.append({
                'name': model_name,
                'score': score,
                'audio': supports_audio,
                'multilingual': multilingual,
                'type': model.config.model_type
            })
            
            result_text += f"βœ… Loaded successfully | Audio: {'βœ…' if supports_audio else '❌'} | Multilingual: {'βœ…' if multilingual else '❌'} | Score: {score}/8\n\n"
            
        except Exception as e:
            result_text += f"❌ Loading failed: {str(e)}\n\n"
    
    # Sort and recommend
    results.sort(key=lambda x: x['score'], reverse=True)
    
    result_text += "πŸ† Recommendation Rankings:\n"
    result_text += "=" * 40 + "\n"
    
    for i, model in enumerate(results, 1):
        result_text += f"{i}. {model['name']}\n"
        result_text += f"   Score: {model['score']}/8 | Type: {model['type']}\n\n"
    
    return result_text

# Create Gradio interface
with gr.Blocks(title="πŸ€– Depression Detection Model Compatibility Test") as app:
    gr.Markdown("""
    # πŸ€– Depression Detection Model Compatibility Test Tool
    
    This tool helps you quickly test whether Hugging Face models are suitable for depression detection tasks.
    
    ## Features:
    - βœ… Check model loading compatibility
    - 🎡 Verify audio input support
    - 🌍 Assess multilingual capabilities
    - πŸ“Š Suitability scoring (0-15 points)
    - πŸ’‘ Usage recommendations
    """)
    
    with gr.Tab("Single Model Test"):
        with gr.Row():
            model_input = gr.Textbox(
                placeholder="Enter model name, e.g.: facebook/wav2vec2-large-xlsr-53",
                label="πŸ” Model Name",
                value="ireneminhee/speech-to-depression"
            )
            test_btn = gr.Button("πŸš€ Start Test", variant="primary")
        
        result_output = gr.Textbox(
            label="πŸ“‹ Test Results",
            lines=25,
            max_lines=50
        )
        
        test_btn.click(
            fn=test_single_model,
            inputs=[model_input],
            outputs=[result_output]
        )
    
    with gr.Tab("Recommended Models Batch Test"):
        gr.Markdown("""
        ### 🌟 Recommended Depression Detection Candidate Models
        
        These models perform well in speech emotion recognition and multilingual support:
        - `facebook/wav2vec2-large-xlsr-53` - Multilingual speech representation learning
        - `microsoft/wavlm-large` - Speech understanding specialized model
        - `harshit345/xlsr-wav2vec-speech-emotion-recognition` - Emotion recognition
        - `audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim` - Emotion dimension recognition
        - `speechbrain/emotion-recognition-wav2vec2-IEMOCAP` - Emotion classification
        """)
        
        batch_test_btn = gr.Button("πŸ” Batch Test Recommended Models", variant="primary")
        batch_result_output = gr.Textbox(
            label="πŸ“Š Batch Test Results",
            lines=20,
            max_lines=50
        )
        
        batch_test_btn.click(
            fn=test_recommended_models,
            inputs=[],
            outputs=[batch_result_output]
        )
    
    with gr.Tab("Usage Instructions"):
        gr.Markdown("""
        ## πŸ“– Usage Instructions
        
        ### Scoring Criteria (Redesigned):
        - **Depression-specific model** (+6 points): Specifically for depression/mental health detection
        - **Emotion recognition model** (+3 points): For emotion recognition, potentially applicable
        - **Audio support** (+2 points): Whether the model can process audio input
        - **Multilingual support** (+2 points): Support for Chinese, English, German, Russian
        - **Architecture suitability** (+2 points): Whether model architecture is suitable for speech classification
        - **Classification configuration** (+1 point): Whether configured for classification tasks
        - **Clinical datasets** (+2 points): Whether trained on clinical depression datasets
        
        ### Score Interpretation:
        - **12-15 points**: 🌟 Highly recommended, specialized depression detection model
        - **8-11 points**: πŸ‘ Recommended, may need fine-tuning
        - **5-7 points**: ⚠️ Use with caution, needs modification
        - **0-4 points**: ❌ Not recommended
        
        ### Next Steps:
        1. Select the top 2-3 models with highest scores
        2. Conduct in-depth testing in Google Colab
        3. Fine-tune using DAIC-WOZ dataset
        4. Final evaluation with your multilingual data
        """)

# Launch application
if __name__ == "__main__":
    app.launch()