File size: 15,770 Bytes
3df16ad 9c98934 3df16ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import gradio as gr
import torch
import numpy as np
from transformers import (
AutoModel, AutoProcessor, AutoFeatureExtractor,
AutoTokenizer, pipeline
)
import warnings
warnings.filterwarnings("ignore")
def test_single_model(model_name):
"""Test compatibility of a single model"""
if not model_name.strip():
return "Please enter a model name"
result_text = f"π Testing Model: {model_name}\n"
result_text += "=" * 60 + "\n\n"
try:
# 1. Load model
result_text += "1οΈβ£ Loading Model...\n"
model = AutoModel.from_pretrained(model_name)
result_text += " β
Model loaded successfully\n"
result_text += f" π Model type: {model.config.model_type}\n"
result_text += f" ποΈ Model class: {model.__class__.__name__}\n\n"
# 2. Check model architecture
result_text += "2οΈβ£ Checking Model Architecture...\n"
if hasattr(model.config, 'hidden_size'):
result_text += f" π’ Hidden size: {model.config.hidden_size}\n"
if hasattr(model.config, 'num_hidden_layers'):
result_text += f" π Number of layers: {model.config.num_hidden_layers}\n"
if hasattr(model.config, 'vocab_size'):
result_text += f" π Vocabulary size: {model.config.vocab_size}\n"
result_text += "\n"
# 3. Try to load processor
result_text += "3οΈβ£ Loading Processor...\n"
processor = None
supports_audio = False
try:
processor = AutoProcessor.from_pretrained(model_name)
result_text += f" β
Processor loaded successfully: {processor.__class__.__name__}\n"
supports_audio = True
except:
try:
processor = AutoFeatureExtractor.from_pretrained(model_name)
result_text += f" β
Feature extractor loaded successfully: {processor.__class__.__name__}\n"
supports_audio = True
except:
result_text += " β Cannot load audio processor\n"
supports_audio = False
result_text += "\n"
# 4. Check input requirements
result_text += "4οΈβ£ Checking Input Requirements...\n"
sampling_rate = 16000 # Default value
if processor and supports_audio:
if hasattr(processor, 'sampling_rate'):
sampling_rate = processor.sampling_rate
result_text += f" π΅ Sampling rate: {sampling_rate} Hz\n"
if hasattr(processor, 'feature_size'):
result_text += f" π Feature dimension: {processor.feature_size}\n"
if hasattr(processor, 'return_attention_mask'):
result_text += f" π Supports attention mask: {processor.return_attention_mask}\n"
result_text += "\n"
# 5. Test inference
result_text += "5οΈβ£ Testing Inference...\n"
if supports_audio:
try:
# Create dummy audio data (2 seconds)
dummy_audio = np.random.randn(sampling_rate * 2).astype(np.float32)
# Process audio
inputs = processor(dummy_audio, sampling_rate=sampling_rate, return_tensors="pt")
# Model inference
with torch.no_grad():
outputs = model(**inputs)
# Check output
if hasattr(outputs, 'last_hidden_state'):
shape = outputs.last_hidden_state.shape
result_text += f" β
Inference successful! Hidden state shape: {shape}\n"
elif hasattr(outputs, 'logits'):
shape = outputs.logits.shape
result_text += f" β
Inference successful! Logits shape: {shape}\n"
else:
result_text += f" β
Inference successful! Output type: {type(outputs)}\n"
except Exception as e:
result_text += f" β Inference failed: {str(e)}\n"
else:
result_text += " β οΈ Audio input not supported, skipping inference test\n"
result_text += "\n"
# 6. Multilingual support check
result_text += "6οΈβ£ Multilingual Support Check...\n"
multilingual = False
if hasattr(model.config, 'vocab_size') and model.config.vocab_size > 50000:
result_text += f" β
Likely supports multiple languages (large vocabulary: {model.config.vocab_size})\n"
multilingual = True
elif any(keyword in model_name.lower() for keyword in ['xlsr', 'multilingual', 'cross-lingual']):
result_text += " β
Supports multiple languages based on model name\n"
multilingual = True
else:
result_text += " β Multilingual support unclear\n"
result_text += "\n"
# 7. Depression detection suitability scoring
result_text += "7οΈβ£ Depression Detection Suitability Assessment...\n"
score = 0
max_score = 15
# Most important: Specifically for depression/mental health detection (6 points)
depression_keywords = ['depression', 'mental-health', 'psychological', 'mood', 'phq']
emotion_keywords = ['emotion', 'sentiment', 'affective', 'feeling']
if any(keyword in model_name.lower() for keyword in depression_keywords):
score += 6
result_text += " π― Specifically for depression/mental health detection (+6 points)\n"
elif any(keyword in model_name.lower() for keyword in emotion_keywords):
score += 3
result_text += " π For emotion recognition, potentially applicable (+3 points)\n"
# Basic requirement: Audio input support (2 points)
if supports_audio:
score += 2
result_text += " π΅ Supports audio input (+2 points)\n"
else:
result_text += " β Does not support audio input (0 points)\n"
# Multilingual support (2 points)
if multilingual:
score += 2
result_text += " π Supports multiple languages (+2 points)\n"
# Architecture suitability (2 points)
if model.config.model_type in ['wav2vec2', 'hubert', 'wavlm']:
score += 2
result_text += " ποΈ Excellent speech representation learning architecture (+2 points)\n"
elif model.config.model_type == 'whisper':
score += 1
result_text += " β οΈ Whisper architecture needs modification for classification (+1 point)\n"
# Check if configured for classification
if hasattr(model.config, 'num_labels'):
if model.config.num_labels == 2:
score += 1
result_text += f" β
Binary classification task configuration (likely depression detection) (+1 point)\n"
else:
score += 0.5
result_text += f" β οΈ Multi-class task ({model.config.num_labels} classes) (+0.5 points)\n"
# Check for training dataset clues
daic_keywords = ['daic', 'wizard-of-oz', 'depression-detection', 'clinical']
if any(keyword in model_name.lower() for keyword in daic_keywords):
score += 2
result_text += " π Possibly trained on clinical depression datasets (+2 points)\n"
result_text += f"\nπ― Depression Detection Suitability Score: {score}/{max_score}\n"
# 8. Recommendations
result_text += "\n8οΈβ£ Usage Recommendations...\n"
if score >= 12:
result_text += " π Highly recommended! Specifically for depression detection, very suitable\n"
elif score >= 8:
result_text += " π Recommended, may need some fine-tuning\n"
elif score >= 5:
result_text += " β οΈ Use with caution, may need significant modification\n"
else:
result_text += " β Not recommended, suggest finding specialized depression detection models\n"
# 9. Further inspection suggestions
result_text += "\n9οΈβ£ Further Inspection Suggestions...\n"
result_text += " π Check model card for training data description\n"
result_text += " π Check if DAIC-WOZ or other depression datasets are mentioned\n"
result_text += " π Check papers or documentation for task description\n"
result_text += " π§ͺ Test with small samples to see if model output matches depression detection expectations\n"
return result_text
except Exception as e:
error_msg = f"β Model test failed: {str(e)}\n"
error_msg += "\nPossible causes:\n"
error_msg += "β’ Incorrect model name\n"
error_msg += "β’ Model requires special permissions\n"
error_msg += "β’ Network connection issues\n"
error_msg += "β’ Model architecture incompatibility\n"
return error_msg
def test_recommended_models():
"""Test recommended model list"""
recommended_models = [
"facebook/wav2vec2-large-xlsr-53",
"microsoft/wavlm-large",
"harshit345/xlsr-wav2vec-speech-emotion-recognition",
"audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim",
"speechbrain/emotion-recognition-wav2vec2-IEMOCAP"
]
result_text = "π Batch Testing Recommended Models\n"
result_text += "=" * 60 + "\n\n"
results = []
for i, model_name in enumerate(recommended_models, 1):
result_text += f"π Testing {i}/{len(recommended_models)}: {model_name}\n"
result_text += "-" * 50 + "\n"
try:
# Simplified quick test
model = AutoModel.from_pretrained(model_name)
# Check audio support
supports_audio = False
try:
processor = AutoProcessor.from_pretrained(model_name)
supports_audio = True
except:
try:
processor = AutoFeatureExtractor.from_pretrained(model_name)
supports_audio = True
except:
pass
# Check multilingual
multilingual = False
if hasattr(model.config, 'vocab_size') and model.config.vocab_size > 50000:
multilingual = True
elif any(keyword in model_name.lower() for keyword in ['xlsr', 'multilingual']):
multilingual = True
# Calculate simplified score
score = 0
if supports_audio:
score += 3
if multilingual:
score += 2
if model.config.model_type in ['wav2vec2', 'hubert', 'wavlm']:
score += 3
results.append({
'name': model_name,
'score': score,
'audio': supports_audio,
'multilingual': multilingual,
'type': model.config.model_type
})
result_text += f"β
Loaded successfully | Audio: {'β
' if supports_audio else 'β'} | Multilingual: {'β
' if multilingual else 'β'} | Score: {score}/8\n\n"
except Exception as e:
result_text += f"β Loading failed: {str(e)}\n\n"
# Sort and recommend
results.sort(key=lambda x: x['score'], reverse=True)
result_text += "π Recommendation Rankings:\n"
result_text += "=" * 40 + "\n"
for i, model in enumerate(results, 1):
result_text += f"{i}. {model['name']}\n"
result_text += f" Score: {model['score']}/8 | Type: {model['type']}\n\n"
return result_text
# Create Gradio interface
with gr.Blocks(title="π€ Depression Detection Model Compatibility Test") as app:
gr.Markdown("""
# π€ Depression Detection Model Compatibility Test Tool
This tool helps you quickly test whether Hugging Face models are suitable for depression detection tasks.
## Features:
- β
Check model loading compatibility
- π΅ Verify audio input support
- π Assess multilingual capabilities
- π Suitability scoring (0-15 points)
- π‘ Usage recommendations
""")
with gr.Tab("Single Model Test"):
with gr.Row():
model_input = gr.Textbox(
placeholder="Enter model name, e.g.: facebook/wav2vec2-large-xlsr-53",
label="π Model Name",
value="ireneminhee/speech-to-depression"
)
test_btn = gr.Button("π Start Test", variant="primary")
result_output = gr.Textbox(
label="π Test Results",
lines=25,
max_lines=50
)
test_btn.click(
fn=test_single_model,
inputs=[model_input],
outputs=[result_output]
)
with gr.Tab("Recommended Models Batch Test"):
gr.Markdown("""
### π Recommended Depression Detection Candidate Models
These models perform well in speech emotion recognition and multilingual support:
- `facebook/wav2vec2-large-xlsr-53` - Multilingual speech representation learning
- `microsoft/wavlm-large` - Speech understanding specialized model
- `harshit345/xlsr-wav2vec-speech-emotion-recognition` - Emotion recognition
- `audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim` - Emotion dimension recognition
- `speechbrain/emotion-recognition-wav2vec2-IEMOCAP` - Emotion classification
""")
batch_test_btn = gr.Button("π Batch Test Recommended Models", variant="primary")
batch_result_output = gr.Textbox(
label="π Batch Test Results",
lines=20,
max_lines=50
)
batch_test_btn.click(
fn=test_recommended_models,
inputs=[],
outputs=[batch_result_output]
)
with gr.Tab("Usage Instructions"):
gr.Markdown("""
## π Usage Instructions
### Scoring Criteria (Redesigned):
- **Depression-specific model** (+6 points): Specifically for depression/mental health detection
- **Emotion recognition model** (+3 points): For emotion recognition, potentially applicable
- **Audio support** (+2 points): Whether the model can process audio input
- **Multilingual support** (+2 points): Support for Chinese, English, German, Russian
- **Architecture suitability** (+2 points): Whether model architecture is suitable for speech classification
- **Classification configuration** (+1 point): Whether configured for classification tasks
- **Clinical datasets** (+2 points): Whether trained on clinical depression datasets
### Score Interpretation:
- **12-15 points**: π Highly recommended, specialized depression detection model
- **8-11 points**: π Recommended, may need fine-tuning
- **5-7 points**: β οΈ Use with caution, needs modification
- **0-4 points**: β Not recommended
### Next Steps:
1. Select the top 2-3 models with highest scores
2. Conduct in-depth testing in Google Colab
3. Fine-tune using DAIC-WOZ dataset
4. Final evaluation with your multilingual data
""")
# Launch application
if __name__ == "__main__":
app.launch() |