Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from .custom_types import Method | |
class LuongAttention(nn.Module): | |
def __init__(self, method: Method, hidden_size: int): | |
super().__init__() | |
self.hidden_size = hidden_size | |
if not isinstance(method, Method): | |
raise ValueError(method, f"should be a member of `Method` enum") | |
match method: | |
case Method.DOT: | |
self.method = self.dot | |
case Method.GENERAL: | |
self.method = self.general | |
self.Wa = nn.Linear(hidden_size, hidden_size) | |
case Method.CONCAT: | |
self.method = self.concat | |
self.Wa = nn.Linear(hidden_size * 2, hidden_size) | |
self.Va = nn.Parameter(torch.FloatTensor(1, hidden_size)) | |
def dot(self, hidden, encoder_outputs): | |
return torch.sum(hidden * encoder_outputs, dim=2) | |
def general(self, hidden, encoder_outputs): | |
return torch.sum(hidden * self.Wa(encoder_outputs), dim=2) | |
def concat(self, hidden, encoder_outputs): | |
hidden = hidden.permute(1, 0, 2) | |
energy = self.Wa(torch.cat((hidden.permute(1, 0, 2).expand(-1, encoder_outputs.size(1), -1), encoder_outputs), 2)).tanh() | |
return torch.sum(self.Va * energy, dim=2) | |
def forward(self, hidden, encoder_outputs): | |
attn_weights = self.method(hidden, encoder_outputs) | |
return F.softmax(attn_weights, dim=1).unsqueeze(1) |