File size: 17,202 Bytes
899d177
 
 
 
 
5b0ad58
899d177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0ad58
 
899d177
 
 
5b0ad58
 
 
 
 
 
 
 
 
 
 
 
 
 
7e6f24f
f6c9c19
 
 
 
 
 
 
5b0ad58
f6c9c19
25d9750
5b0ad58
899d177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0ad58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
899d177
 
 
 
 
 
 
 
 
 
 
 
5b0ad58
 
899d177
 
 
 
 
 
 
 
25d9750
5b0ad58
25d9750
899d177
5b0ad58
899d177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e6f24f
899d177
 
5b0ad58
 
 
899d177
 
5b0ad58
899d177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0ad58
899d177
 
 
 
 
5b0ad58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import re
from typing import List, Dict, Optional
from pathlib import Path
from collections import defaultdict
from dataclasses import dataclass
import fitz  # PyMuPDF
from docx import Document
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import TfidfVectorizer

@dataclass
class DocumentChunk:
    chunk_id: int
    text: str
    embedding: List[float]
    metadata: Dict

class DocumentChunker:
    def __init__(self):
        self.embed_model = SentenceTransformer("all-MiniLM-L6-v2")

        self.category_patterns = {
            "Project Summary": [r"\bsummary\b", r"\bproject overview\b"],
            "Contact Information": [r"\bcontact\b", r"\bemail\b", r"\bphone\b", r"\baddress\b"],
            "Problem/ Need": [r"\bproblem\b", r"\bneed\b", r"\bchallenge\b"],
            "Mission Statement": [r"\bmission\b", r"\bvision\b"],
            "Fit or Alignment to Grant": [r"\balignment\b", r"\bfit\b", r"\bgrant (focus|priority)\b"],
            "Goals/ Vision / Objectives": [r"\bgoals?\b", r"\bobjectives?\b", r"\bvision\b"],
            "Our Solution *PROGRAMS* and Approach": [r"\bsolution\b", r"\bprogram\b", r"\bapproach\b"],
            "Impact, Results, or Outcomes": [r"\bimpact\b", r"\bresults?\b", r"\boutcomes?\b"],
            "Beneficiaries": [r"\bbeneficiaries\b", r"\bwho we serve\b", r"\btarget audience\b"],
            "Differentiation with Competitors": [r"\bcompetitor\b", r"\bdifferent\b", r"\bvalue proposition\b"],
            "Plan and Timeline": [r"\btimeline\b", r"\bschedule\b", r"\bmilestone\b"],
            "Budget and Funding": [r"\bbudget\b", r"\bfunding\b", r"\bcost\b"],
            "Sustainability and Strategy": [r"\bsustainability\b", r"\bexit strategy\b"],
            "Organization's History": [r"\bhistory\b", r"\borganization background\b"],
            "Team Member Descriptions": [r"\bteam\b", r"\bstaff\b", r"\blived experience\b"],
        }

        self.patterns = {
            'grant_application': {
                'header_patterns': [r'\*\*([^*]+)\*\*', r'^([A-Z][^a-z]*[A-Z])$', r'^([A-Z][A-Za-z\s]+)$'],
                'question_patterns': [r'^.+\?$', r'^\*?Please .+', r'^How .+', r'^What .+', r'^Describe .+']
            }
        }

    def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
        lower_text = text.lower()
        match_scores = defaultdict(int)
        for category, patterns in self.category_patterns.items():
            for pattern in patterns:
                matches = re.findall(pattern, lower_text)
                match_scores[category] += len(matches)

        if not match_scores:
            return None if return_first else []

        sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
        return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]

    def extract_text(self, file_path: str) -> str:
        if file_path.endswith(".docx"):
            doc = Document(file_path)
            return '\n'.join([f"**{p.text}**" if any(r.bold for r in p.runs) else p.text for p in doc.paragraphs])
        elif file_path.endswith(".pdf"):
            text = ""
            with fitz.open(file_path) as doc:
                for page in doc:
                    text += page.get_text("text")  # More accurate reading order
            return text
        else:
            return Path(file_path).read_text()

    def detect_document_type(self, text: str) -> str:
        keywords = ['grant', 'funding', 'mission']
        return 'grant_application' if sum(k in text.lower() for k in keywords) >= 2 else 'generic'

    def extract_headers(self, text: str, doc_type: str) -> List[Dict]:
        lines = text.split('\n')
        headers = []
        patterns = self.patterns.get(doc_type, self.patterns['grant_application'])
        for i, line in enumerate(lines):
            line = line.strip("* ")
            if any(re.match(p, line, re.IGNORECASE) for p in patterns['question_patterns']):
                headers.append({'text': line, 'line_number': i, 'pattern_type': 'question'})
            elif any(re.match(p, line) for p in patterns['header_patterns']):
                headers.append({'text': line, 'line_number': i, 'pattern_type': 'header'})
        return headers

    def fallback_chunking(self, text: str, max_words=150, stride=100) -> List[Dict]:
        words = text.split()
        chunks = []
        for i in range(0, len(words), stride):
            chunk_text = ' '.join(words[i:i + max_words])
            if len(chunk_text.split()) < 20:
                continue
            chunks.append({
                'chunk_id': len(chunks) + 1,
                'header': '',
                'questions': [],
                'content': chunk_text,
                'pattern_type': 'fallback',
                'split_index': i // stride
            })
        return chunks

    def chunk_by_headers(self, text: str, headers: List[Dict], max_words=150) -> List[Dict]:
        lines = text.split('\n')
        chunks = []

        for i, header in enumerate(headers):
            start, end = header['line_number'], headers[i + 1]['line_number'] if i + 1 < len(headers) else len(lines)
            content_lines = lines[start + 1:end]
            questions = [l.strip() for l in content_lines if l.strip().endswith('?') and len(l.split()) <= 20]
            content = ' '.join([l.strip() for l in content_lines if l.strip() and l.strip() not in questions])

            for j in range(0, len(content.split()), max_words):
                chunk_text = ' '.join(content.split()[j:j + max_words])
                if len(chunk_text.split()) < 20:
                    continue
                chunks.append({
                    'chunk_id': len(chunks) + 1,
                    'header': header['text'] if header['pattern_type'] == 'header' else '',
                    'questions': questions if header['pattern_type'] == 'question' else [],
                    'content': chunk_text,
                    'pattern_type': header['pattern_type'],
                    'split_index': j // max_words
                })

        return chunks

    def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
        clean = re.sub(r'[^a-z0-9\s]', ' ', text.lower())
        vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
        tfidf = vectorizer.fit_transform([clean])
        terms = vectorizer.get_feature_names_out()
        scores = tfidf.toarray()[0]
        top_terms = [term for term, score in sorted(zip(terms, scores), key=lambda x: -x[1]) if score > 0]
        return top_terms[:max_features]

    def calculate_confidence_score(self, chunk: Dict) -> float:
        score = 0.0
        if chunk.get('header'): score += 0.3
        if chunk.get('content') and len(chunk['content'].split()) > 20: score += 0.3
        if chunk.get('questions'): score += 0.2
        return min(score, 1.0)

    def process_document(self, file_path: str, title: Optional[str] = None) -> List[Dict]:
        file_path = Path(file_path)
        text = self.extract_text(str(file_path))
        doc_type = self.detect_document_type(text)
        headers = self.extract_headers(text, doc_type)
        chunks = self.chunk_by_headers(text, headers)
        if not chunks:
            chunks = self.fallback_chunking(text)

        final_chunks = []
        for chunk in chunks:
            full_text = f"{chunk['header']} {' '.join(chunk['questions'])} {chunk['content']}".strip()
            category = self.match_category(full_text, return_first=True)
            categories = self.match_category(full_text, return_first=False)
            embedding = self.embed_model.encode(full_text).tolist()
            topics = self.extract_topics_tfidf(full_text)
            confidence = self.calculate_confidence_score(chunk)

            final_chunks.append({
                "chunk_id": chunk['chunk_id'],
                "text": full_text,
                "embedding": embedding,
                "metadata": {
                    **chunk,
                    "title": title or file_path.name,
                    "category": category,
                    "categories": categories,
                    "topics": topics,
                    "chunking_strategy": chunk['pattern_type'],
                    "confidence_score": confidence
                }
            })

        return final_chunks

# import re
# from typing import List, Dict, Optional
# from pathlib import Path
# from collections import defaultdict
# from dataclasses import dataclass

# from docx import Document
# from sentence_transformers import SentenceTransformer
# from sklearn.feature_extraction.text import TfidfVectorizer
# import fitz  # PyMuPDF


# @dataclass
# class DocumentChunk:
#     chunk_id: int
#     text: str
#     embedding: List[float]
#     metadata: Dict


# class DocumentChunker:
#     def __init__(self):
#         self.embed_model = SentenceTransformer("all-MiniLM-L6-v2")

#         self.category_patterns = {
#             "Project Summary": [r"\bsummary\b", r"\bproject overview\b"],
#             "Contact Information": [r"\bcontact\b", r"\bemail\b", r"\bphone\b", r"\baddress\b"],
#             "Problem/ Need": [r"\bproblem\b", r"\bneed\b", r"\bchallenge\b"],
#             "Mission Statement": [r"\bmission\b", r"\bvision\b"],
#             "Fit or Alignment to Grant": [r"\balignment\b", r"\bfit\b", r"\bgrant (focus|priority)\b"],
#             "Goals/ Vision / Objectives": [r"\bgoals?\b", r"\bobjectives?\b", r"\bvision\b"],
#             "Our Solution *PROGRAMS* and Approach": [r"\bsolution\b", r"\bprogram\b", r"\bapproach\b"],
#             "Impact, Results, or Outcomes": [r"\bimpact\b", r"\bresults?\b", r"\boutcomes?\b"],
#             "Beneficiaries": [r"\bbeneficiaries\b", r"\bwho we serve\b", r"\btarget audience\b"],
#             "Differentiation with Competitors": [r"\bcompetitor\b", r"\bdifferent\b", r"\bvalue proposition\b"],
#             "Plan and Timeline": [r"\btimeline\b", r"\bschedule\b", r"\bmilestone\b"],
#             "Budget and Funding": [r"\bbudget\b", r"\bfunding\b", r"\bcost\b"],
#             "Sustainability and Strategy": [r"\bsustainability\b", r"\bexit strategy\b"],
#             "Organization's History": [r"\bhistory\b", r"\borganization background\b"],
#             "Team Member Descriptions": [r"\bteam\b", r"\bstaff\b", r"\blived experience\b"],
#         }

#         self.patterns = {
#             'grant_application': {
#                 'header_patterns': [
#                     r'\*\*([^*]+)\*\*',
#                     r'^([A-Z][^a-z]*[A-Z])$',
#                     r'^([A-Z][A-Za-z\s]+)$',
#                 ],
#                 'question_patterns': [
#                     r'^.+\?$',
#                     r'^\*?Please .+',
#                     r'^How .+',
#                     r'^What .+',
#                     r'^Describe .+',
#                 ]
#             }
#         }

#     def extract_text(self, file_path: str) -> str:
#         if file_path.endswith(".docx"):
#             doc = Document(file_path)
#             return '\n'.join([f"**{p.text}**" if any(r.bold for r in p.runs) else p.text for p in doc.paragraphs])
#         elif file_path.endswith(".pdf"):
#             text = ""
#             with fitz.open(file_path) as doc:
#                 for page in doc:
#                     text += page.get_text()
#             return text
#         elif file_path.endswith(".txt"):
#             return Path(file_path).read_text()
#         else:
#             raise ValueError("Unsupported file format")

#     def detect_document_type(self, text: str) -> str:
#         keywords = ['grant', 'funding', 'mission']
#         return 'grant_application' if sum(k in text.lower() for k in keywords) >= 2 else 'generic'

#     def extract_headers(self, text: str, doc_type: str) -> List[Dict]:
#         lines = text.split('\n')
#         headers = []
#         patterns = self.patterns.get(doc_type, self.patterns['grant_application'])
#         for i, line in enumerate(lines):
#             line = line.strip("* ")
#             if any(re.match(p, line, re.IGNORECASE) for p in patterns['question_patterns']):
#                 headers.append({'text': line, 'line_number': i, 'pattern_type': 'question'})
#             elif any(re.match(p, line) for p in patterns['header_patterns']):
#                 headers.append({'text': line, 'line_number': i, 'pattern_type': 'header'})
#         return headers

#     def chunk_by_headers(self, text: str, headers: List[Dict], max_words=150) -> List[Dict]:
#         lines = text.split('\n')
#         chunks = []

#         if not headers:
#             words = text.split()
#             for i in range(0, len(words), max_words):
#                 piece = ' '.join(words[i:i + max_words])
#                 chunks.append({
#                     'chunk_id': len(chunks) + 1,
#                     'header': '',
#                     'questions': [],
#                     'content': piece,
#                     'pattern_type': 'auto'
#                 })
#             return chunks

#         for i, header in enumerate(headers):
#             start, end = header['line_number'], headers[i + 1]['line_number'] if i + 1 < len(headers) else len(lines)
#             content_lines = lines[start + 1:end]
#             questions = [l.strip() for l in content_lines if l.strip().endswith('?') and len(l.split()) <= 20]
#             content = ' '.join([l.strip() for l in content_lines if l.strip() and l.strip() not in questions])

#             for j in range(0, len(content.split()), max_words):
#                 chunk_text = ' '.join(content.split()[j:j + max_words])
#                 chunks.append({
#                     'chunk_id': len(chunks) + 1,
#                     'header': header['text'] if header['pattern_type'] == 'header' else '',
#                     'questions': questions if header['pattern_type'] == 'question' else [],
#                     'content': chunk_text,
#                     'pattern_type': header['pattern_type'],
#                     'split_index': j // max_words
#                 })
#         return chunks

#     def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
#         lower_text = text.lower()
#         match_scores = defaultdict(int)
#         for category, patterns in self.category_patterns.items():
#             for pattern in patterns:
#                 matches = re.findall(pattern, lower_text)
#                 match_scores[category] += len(matches)

#         if not match_scores:
#             return None if return_first else []

#         sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
#         return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]

#     def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
#         clean = re.sub(r'[^\w\s]', ' ', text.lower())
#         vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
#         tfidf = vectorizer.fit_transform([clean])
#         terms = vectorizer.get_feature_names_out()
#         scores = tfidf.toarray()[0]
#         top_terms = [term for term, score in sorted(zip(terms, scores), key=lambda x: -x[1]) if score > 0]
#         return top_terms[:max_features]

#     def calculate_confidence_score(self, chunk: Dict) -> float:
#         score = 0.0
#         if chunk.get('header'): score += 0.3
#         if chunk.get('content') and len(chunk['content'].split()) > 20: score += 0.3
#         if chunk.get('questions'): score += 0.2
#         return min(score, 1.0)

#     def process_document(self, file_path: str, title: Optional[str] = None) -> List[Dict]:
#         file_path = Path(file_path)
#         text = self.extract_text(str(file_path))
#         doc_type = self.detect_document_type(text)
#         headers = self.extract_headers(text, doc_type)
#         raw_chunks = self.chunk_by_headers(text, headers)

#         final_chunks = []
#         for chunk in raw_chunks:
#             full_text = f"{chunk['header']} {' '.join(chunk['questions'])} {chunk['content']}".strip()
#             category = self.match_category(full_text, return_first=True)
#             categories = self.match_category(full_text, return_first=False)
#             embedding = self.embed_model.encode(full_text).tolist()
#             topics = self.extract_topics_tfidf(full_text)
#             confidence = self.calculate_confidence_score(chunk)

#             final_chunks.append({
#                 "chunk_id": chunk['chunk_id'],
#                 "text": full_text,
#                 "embedding": embedding,
#                 "metadata": {
#                     **chunk,
#                     "title": title or file_path.name,
#                     "category": category,
#                     "categories": categories,
#                     "topics": topics,
#                     "confidence_score": confidence
#                 }
#             })

#         return final_chunks