document_chunker / document_chunker.py
Tesneem's picture
Update document_chunker.py
5b0ad58 verified
import re
from typing import List, Dict, Optional
from pathlib import Path
from collections import defaultdict
from dataclasses import dataclass
import fitz # PyMuPDF
from docx import Document
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
@dataclass
class DocumentChunk:
chunk_id: int
text: str
embedding: List[float]
metadata: Dict
class DocumentChunker:
def __init__(self):
self.embed_model = SentenceTransformer("all-MiniLM-L6-v2")
self.category_patterns = {
"Project Summary": [r"\bsummary\b", r"\bproject overview\b"],
"Contact Information": [r"\bcontact\b", r"\bemail\b", r"\bphone\b", r"\baddress\b"],
"Problem/ Need": [r"\bproblem\b", r"\bneed\b", r"\bchallenge\b"],
"Mission Statement": [r"\bmission\b", r"\bvision\b"],
"Fit or Alignment to Grant": [r"\balignment\b", r"\bfit\b", r"\bgrant (focus|priority)\b"],
"Goals/ Vision / Objectives": [r"\bgoals?\b", r"\bobjectives?\b", r"\bvision\b"],
"Our Solution *PROGRAMS* and Approach": [r"\bsolution\b", r"\bprogram\b", r"\bapproach\b"],
"Impact, Results, or Outcomes": [r"\bimpact\b", r"\bresults?\b", r"\boutcomes?\b"],
"Beneficiaries": [r"\bbeneficiaries\b", r"\bwho we serve\b", r"\btarget audience\b"],
"Differentiation with Competitors": [r"\bcompetitor\b", r"\bdifferent\b", r"\bvalue proposition\b"],
"Plan and Timeline": [r"\btimeline\b", r"\bschedule\b", r"\bmilestone\b"],
"Budget and Funding": [r"\bbudget\b", r"\bfunding\b", r"\bcost\b"],
"Sustainability and Strategy": [r"\bsustainability\b", r"\bexit strategy\b"],
"Organization's History": [r"\bhistory\b", r"\borganization background\b"],
"Team Member Descriptions": [r"\bteam\b", r"\bstaff\b", r"\blived experience\b"],
}
self.patterns = {
'grant_application': {
'header_patterns': [r'\*\*([^*]+)\*\*', r'^([A-Z][^a-z]*[A-Z])$', r'^([A-Z][A-Za-z\s]+)$'],
'question_patterns': [r'^.+\?$', r'^\*?Please .+', r'^How .+', r'^What .+', r'^Describe .+']
}
}
def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
lower_text = text.lower()
match_scores = defaultdict(int)
for category, patterns in self.category_patterns.items():
for pattern in patterns:
matches = re.findall(pattern, lower_text)
match_scores[category] += len(matches)
if not match_scores:
return None if return_first else []
sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]
def extract_text(self, file_path: str) -> str:
if file_path.endswith(".docx"):
doc = Document(file_path)
return '\n'.join([f"**{p.text}**" if any(r.bold for r in p.runs) else p.text for p in doc.paragraphs])
elif file_path.endswith(".pdf"):
text = ""
with fitz.open(file_path) as doc:
for page in doc:
text += page.get_text("text") # More accurate reading order
return text
else:
return Path(file_path).read_text()
def detect_document_type(self, text: str) -> str:
keywords = ['grant', 'funding', 'mission']
return 'grant_application' if sum(k in text.lower() for k in keywords) >= 2 else 'generic'
def extract_headers(self, text: str, doc_type: str) -> List[Dict]:
lines = text.split('\n')
headers = []
patterns = self.patterns.get(doc_type, self.patterns['grant_application'])
for i, line in enumerate(lines):
line = line.strip("* ")
if any(re.match(p, line, re.IGNORECASE) for p in patterns['question_patterns']):
headers.append({'text': line, 'line_number': i, 'pattern_type': 'question'})
elif any(re.match(p, line) for p in patterns['header_patterns']):
headers.append({'text': line, 'line_number': i, 'pattern_type': 'header'})
return headers
def fallback_chunking(self, text: str, max_words=150, stride=100) -> List[Dict]:
words = text.split()
chunks = []
for i in range(0, len(words), stride):
chunk_text = ' '.join(words[i:i + max_words])
if len(chunk_text.split()) < 20:
continue
chunks.append({
'chunk_id': len(chunks) + 1,
'header': '',
'questions': [],
'content': chunk_text,
'pattern_type': 'fallback',
'split_index': i // stride
})
return chunks
def chunk_by_headers(self, text: str, headers: List[Dict], max_words=150) -> List[Dict]:
lines = text.split('\n')
chunks = []
for i, header in enumerate(headers):
start, end = header['line_number'], headers[i + 1]['line_number'] if i + 1 < len(headers) else len(lines)
content_lines = lines[start + 1:end]
questions = [l.strip() for l in content_lines if l.strip().endswith('?') and len(l.split()) <= 20]
content = ' '.join([l.strip() for l in content_lines if l.strip() and l.strip() not in questions])
for j in range(0, len(content.split()), max_words):
chunk_text = ' '.join(content.split()[j:j + max_words])
if len(chunk_text.split()) < 20:
continue
chunks.append({
'chunk_id': len(chunks) + 1,
'header': header['text'] if header['pattern_type'] == 'header' else '',
'questions': questions if header['pattern_type'] == 'question' else [],
'content': chunk_text,
'pattern_type': header['pattern_type'],
'split_index': j // max_words
})
return chunks
def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
clean = re.sub(r'[^a-z0-9\s]', ' ', text.lower())
vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
tfidf = vectorizer.fit_transform([clean])
terms = vectorizer.get_feature_names_out()
scores = tfidf.toarray()[0]
top_terms = [term for term, score in sorted(zip(terms, scores), key=lambda x: -x[1]) if score > 0]
return top_terms[:max_features]
def calculate_confidence_score(self, chunk: Dict) -> float:
score = 0.0
if chunk.get('header'): score += 0.3
if chunk.get('content') and len(chunk['content'].split()) > 20: score += 0.3
if chunk.get('questions'): score += 0.2
return min(score, 1.0)
def process_document(self, file_path: str, title: Optional[str] = None) -> List[Dict]:
file_path = Path(file_path)
text = self.extract_text(str(file_path))
doc_type = self.detect_document_type(text)
headers = self.extract_headers(text, doc_type)
chunks = self.chunk_by_headers(text, headers)
if not chunks:
chunks = self.fallback_chunking(text)
final_chunks = []
for chunk in chunks:
full_text = f"{chunk['header']} {' '.join(chunk['questions'])} {chunk['content']}".strip()
category = self.match_category(full_text, return_first=True)
categories = self.match_category(full_text, return_first=False)
embedding = self.embed_model.encode(full_text).tolist()
topics = self.extract_topics_tfidf(full_text)
confidence = self.calculate_confidence_score(chunk)
final_chunks.append({
"chunk_id": chunk['chunk_id'],
"text": full_text,
"embedding": embedding,
"metadata": {
**chunk,
"title": title or file_path.name,
"category": category,
"categories": categories,
"topics": topics,
"chunking_strategy": chunk['pattern_type'],
"confidence_score": confidence
}
})
return final_chunks
# import re
# from typing import List, Dict, Optional
# from pathlib import Path
# from collections import defaultdict
# from dataclasses import dataclass
# from docx import Document
# from sentence_transformers import SentenceTransformer
# from sklearn.feature_extraction.text import TfidfVectorizer
# import fitz # PyMuPDF
# @dataclass
# class DocumentChunk:
# chunk_id: int
# text: str
# embedding: List[float]
# metadata: Dict
# class DocumentChunker:
# def __init__(self):
# self.embed_model = SentenceTransformer("all-MiniLM-L6-v2")
# self.category_patterns = {
# "Project Summary": [r"\bsummary\b", r"\bproject overview\b"],
# "Contact Information": [r"\bcontact\b", r"\bemail\b", r"\bphone\b", r"\baddress\b"],
# "Problem/ Need": [r"\bproblem\b", r"\bneed\b", r"\bchallenge\b"],
# "Mission Statement": [r"\bmission\b", r"\bvision\b"],
# "Fit or Alignment to Grant": [r"\balignment\b", r"\bfit\b", r"\bgrant (focus|priority)\b"],
# "Goals/ Vision / Objectives": [r"\bgoals?\b", r"\bobjectives?\b", r"\bvision\b"],
# "Our Solution *PROGRAMS* and Approach": [r"\bsolution\b", r"\bprogram\b", r"\bapproach\b"],
# "Impact, Results, or Outcomes": [r"\bimpact\b", r"\bresults?\b", r"\boutcomes?\b"],
# "Beneficiaries": [r"\bbeneficiaries\b", r"\bwho we serve\b", r"\btarget audience\b"],
# "Differentiation with Competitors": [r"\bcompetitor\b", r"\bdifferent\b", r"\bvalue proposition\b"],
# "Plan and Timeline": [r"\btimeline\b", r"\bschedule\b", r"\bmilestone\b"],
# "Budget and Funding": [r"\bbudget\b", r"\bfunding\b", r"\bcost\b"],
# "Sustainability and Strategy": [r"\bsustainability\b", r"\bexit strategy\b"],
# "Organization's History": [r"\bhistory\b", r"\borganization background\b"],
# "Team Member Descriptions": [r"\bteam\b", r"\bstaff\b", r"\blived experience\b"],
# }
# self.patterns = {
# 'grant_application': {
# 'header_patterns': [
# r'\*\*([^*]+)\*\*',
# r'^([A-Z][^a-z]*[A-Z])$',
# r'^([A-Z][A-Za-z\s]+)$',
# ],
# 'question_patterns': [
# r'^.+\?$',
# r'^\*?Please .+',
# r'^How .+',
# r'^What .+',
# r'^Describe .+',
# ]
# }
# }
# def extract_text(self, file_path: str) -> str:
# if file_path.endswith(".docx"):
# doc = Document(file_path)
# return '\n'.join([f"**{p.text}**" if any(r.bold for r in p.runs) else p.text for p in doc.paragraphs])
# elif file_path.endswith(".pdf"):
# text = ""
# with fitz.open(file_path) as doc:
# for page in doc:
# text += page.get_text()
# return text
# elif file_path.endswith(".txt"):
# return Path(file_path).read_text()
# else:
# raise ValueError("Unsupported file format")
# def detect_document_type(self, text: str) -> str:
# keywords = ['grant', 'funding', 'mission']
# return 'grant_application' if sum(k in text.lower() for k in keywords) >= 2 else 'generic'
# def extract_headers(self, text: str, doc_type: str) -> List[Dict]:
# lines = text.split('\n')
# headers = []
# patterns = self.patterns.get(doc_type, self.patterns['grant_application'])
# for i, line in enumerate(lines):
# line = line.strip("* ")
# if any(re.match(p, line, re.IGNORECASE) for p in patterns['question_patterns']):
# headers.append({'text': line, 'line_number': i, 'pattern_type': 'question'})
# elif any(re.match(p, line) for p in patterns['header_patterns']):
# headers.append({'text': line, 'line_number': i, 'pattern_type': 'header'})
# return headers
# def chunk_by_headers(self, text: str, headers: List[Dict], max_words=150) -> List[Dict]:
# lines = text.split('\n')
# chunks = []
# if not headers:
# words = text.split()
# for i in range(0, len(words), max_words):
# piece = ' '.join(words[i:i + max_words])
# chunks.append({
# 'chunk_id': len(chunks) + 1,
# 'header': '',
# 'questions': [],
# 'content': piece,
# 'pattern_type': 'auto'
# })
# return chunks
# for i, header in enumerate(headers):
# start, end = header['line_number'], headers[i + 1]['line_number'] if i + 1 < len(headers) else len(lines)
# content_lines = lines[start + 1:end]
# questions = [l.strip() for l in content_lines if l.strip().endswith('?') and len(l.split()) <= 20]
# content = ' '.join([l.strip() for l in content_lines if l.strip() and l.strip() not in questions])
# for j in range(0, len(content.split()), max_words):
# chunk_text = ' '.join(content.split()[j:j + max_words])
# chunks.append({
# 'chunk_id': len(chunks) + 1,
# 'header': header['text'] if header['pattern_type'] == 'header' else '',
# 'questions': questions if header['pattern_type'] == 'question' else [],
# 'content': chunk_text,
# 'pattern_type': header['pattern_type'],
# 'split_index': j // max_words
# })
# return chunks
# def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
# lower_text = text.lower()
# match_scores = defaultdict(int)
# for category, patterns in self.category_patterns.items():
# for pattern in patterns:
# matches = re.findall(pattern, lower_text)
# match_scores[category] += len(matches)
# if not match_scores:
# return None if return_first else []
# sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
# return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]
# def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
# clean = re.sub(r'[^\w\s]', ' ', text.lower())
# vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
# tfidf = vectorizer.fit_transform([clean])
# terms = vectorizer.get_feature_names_out()
# scores = tfidf.toarray()[0]
# top_terms = [term for term, score in sorted(zip(terms, scores), key=lambda x: -x[1]) if score > 0]
# return top_terms[:max_features]
# def calculate_confidence_score(self, chunk: Dict) -> float:
# score = 0.0
# if chunk.get('header'): score += 0.3
# if chunk.get('content') and len(chunk['content'].split()) > 20: score += 0.3
# if chunk.get('questions'): score += 0.2
# return min(score, 1.0)
# def process_document(self, file_path: str, title: Optional[str] = None) -> List[Dict]:
# file_path = Path(file_path)
# text = self.extract_text(str(file_path))
# doc_type = self.detect_document_type(text)
# headers = self.extract_headers(text, doc_type)
# raw_chunks = self.chunk_by_headers(text, headers)
# final_chunks = []
# for chunk in raw_chunks:
# full_text = f"{chunk['header']} {' '.join(chunk['questions'])} {chunk['content']}".strip()
# category = self.match_category(full_text, return_first=True)
# categories = self.match_category(full_text, return_first=False)
# embedding = self.embed_model.encode(full_text).tolist()
# topics = self.extract_topics_tfidf(full_text)
# confidence = self.calculate_confidence_score(chunk)
# final_chunks.append({
# "chunk_id": chunk['chunk_id'],
# "text": full_text,
# "embedding": embedding,
# "metadata": {
# **chunk,
# "title": title or file_path.name,
# "category": category,
# "categories": categories,
# "topics": topics,
# "confidence_score": confidence
# }
# })
# return final_chunks